| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229 | 
							- import logging
 - from typing import Optional
 - 
 - from core.model_manager import ModelInstance, ModelManager
 - from core.model_runtime.entities.model_entities import ModelType
 - from core.rag.datasource.keyword.keyword_factory import Keyword
 - from core.rag.datasource.vdb.vector_factory import Vector
 - from core.rag.index_processor.constant.index_type import IndexType
 - from core.rag.index_processor.index_processor_factory import IndexProcessorFactory
 - from core.rag.models.document import Document
 - from extensions.ext_database import db
 - from models.dataset import ChildChunk, Dataset, DatasetProcessRule, DocumentSegment
 - from models.dataset import Document as DatasetDocument
 - from services.entities.knowledge_entities.knowledge_entities import ParentMode
 - 
 - logger = logging.getLogger(__name__)
 - 
 - 
 - class VectorService:
 -     @classmethod
 -     def create_segments_vector(
 -         cls, keywords_list: Optional[list[list[str]]], segments: list[DocumentSegment], dataset: Dataset, doc_form: str
 -     ):
 -         documents: list[Document] = []
 - 
 -         for segment in segments:
 -             if doc_form == IndexType.PARENT_CHILD_INDEX:
 -                 dataset_document = db.session.query(DatasetDocument).filter_by(id=segment.document_id).first()
 -                 if not dataset_document:
 -                     logger.warning(
 -                         "Expected DatasetDocument record to exist, but none was found, document_id=%s, segment_id=%s",
 -                         segment.document_id,
 -                         segment.id,
 -                     )
 -                     continue
 -                 # get the process rule
 -                 processing_rule = (
 -                     db.session.query(DatasetProcessRule)
 -                     .where(DatasetProcessRule.id == dataset_document.dataset_process_rule_id)
 -                     .first()
 -                 )
 -                 if not processing_rule:
 -                     raise ValueError("No processing rule found.")
 -                 # get embedding model instance
 -                 if dataset.indexing_technique == "high_quality":
 -                     # check embedding model setting
 -                     model_manager = ModelManager()
 - 
 -                     if dataset.embedding_model_provider:
 -                         embedding_model_instance = model_manager.get_model_instance(
 -                             tenant_id=dataset.tenant_id,
 -                             provider=dataset.embedding_model_provider,
 -                             model_type=ModelType.TEXT_EMBEDDING,
 -                             model=dataset.embedding_model,
 -                         )
 -                     else:
 -                         embedding_model_instance = model_manager.get_default_model_instance(
 -                             tenant_id=dataset.tenant_id,
 -                             model_type=ModelType.TEXT_EMBEDDING,
 -                         )
 -                 else:
 -                     raise ValueError("The knowledge base index technique is not high quality!")
 -                 cls.generate_child_chunks(
 -                     segment, dataset_document, dataset, embedding_model_instance, processing_rule, False
 -                 )
 -             else:
 -                 rag_document = Document(
 -                     page_content=segment.content,
 -                     metadata={
 -                         "doc_id": segment.index_node_id,
 -                         "doc_hash": segment.index_node_hash,
 -                         "document_id": segment.document_id,
 -                         "dataset_id": segment.dataset_id,
 -                     },
 -                 )
 -                 documents.append(rag_document)
 -         if len(documents) > 0:
 -             index_processor = IndexProcessorFactory(doc_form).init_index_processor()
 -             index_processor.load(dataset, documents, with_keywords=True, keywords_list=keywords_list)
 - 
 -     @classmethod
 -     def update_segment_vector(cls, keywords: Optional[list[str]], segment: DocumentSegment, dataset: Dataset):
 -         # update segment index task
 - 
 -         # format new index
 -         document = Document(
 -             page_content=segment.content,
 -             metadata={
 -                 "doc_id": segment.index_node_id,
 -                 "doc_hash": segment.index_node_hash,
 -                 "document_id": segment.document_id,
 -                 "dataset_id": segment.dataset_id,
 -             },
 -         )
 -         if dataset.indexing_technique == "high_quality":
 -             # update vector index
 -             vector = Vector(dataset=dataset)
 -             vector.delete_by_ids([segment.index_node_id])
 -             vector.add_texts([document], duplicate_check=True)
 -         else:
 -             # update keyword index
 -             keyword = Keyword(dataset)
 -             keyword.delete_by_ids([segment.index_node_id])
 - 
 -             # save keyword index
 -             if keywords and len(keywords) > 0:
 -                 keyword.add_texts([document], keywords_list=[keywords])
 -             else:
 -                 keyword.add_texts([document])
 - 
 -     @classmethod
 -     def generate_child_chunks(
 -         cls,
 -         segment: DocumentSegment,
 -         dataset_document: DatasetDocument,
 -         dataset: Dataset,
 -         embedding_model_instance: ModelInstance,
 -         processing_rule: DatasetProcessRule,
 -         regenerate: bool = False,
 -     ):
 -         index_processor = IndexProcessorFactory(dataset.doc_form).init_index_processor()
 -         if regenerate:
 -             # delete child chunks
 -             index_processor.clean(dataset, [segment.index_node_id], with_keywords=True, delete_child_chunks=True)
 - 
 -         # generate child chunks
 -         document = Document(
 -             page_content=segment.content,
 -             metadata={
 -                 "doc_id": segment.index_node_id,
 -                 "doc_hash": segment.index_node_hash,
 -                 "document_id": segment.document_id,
 -                 "dataset_id": segment.dataset_id,
 -             },
 -         )
 -         # use full doc mode to generate segment's child chunk
 -         processing_rule_dict = processing_rule.to_dict()
 -         processing_rule_dict["rules"]["parent_mode"] = ParentMode.FULL_DOC.value
 -         documents = index_processor.transform(
 -             [document],
 -             embedding_model_instance=embedding_model_instance,
 -             process_rule=processing_rule_dict,
 -             tenant_id=dataset.tenant_id,
 -             doc_language=dataset_document.doc_language,
 -         )
 -         # save child chunks
 -         if documents and documents[0].children:
 -             index_processor.load(dataset, documents)
 - 
 -             for position, child_chunk in enumerate(documents[0].children, start=1):
 -                 child_segment = ChildChunk(
 -                     tenant_id=dataset.tenant_id,
 -                     dataset_id=dataset.id,
 -                     document_id=dataset_document.id,
 -                     segment_id=segment.id,
 -                     position=position,
 -                     index_node_id=child_chunk.metadata["doc_id"],
 -                     index_node_hash=child_chunk.metadata["doc_hash"],
 -                     content=child_chunk.page_content,
 -                     word_count=len(child_chunk.page_content),
 -                     type="automatic",
 -                     created_by=dataset_document.created_by,
 -                 )
 -                 db.session.add(child_segment)
 -         db.session.commit()
 - 
 -     @classmethod
 -     def create_child_chunk_vector(cls, child_segment: ChildChunk, dataset: Dataset):
 -         child_document = Document(
 -             page_content=child_segment.content,
 -             metadata={
 -                 "doc_id": child_segment.index_node_id,
 -                 "doc_hash": child_segment.index_node_hash,
 -                 "document_id": child_segment.document_id,
 -                 "dataset_id": child_segment.dataset_id,
 -             },
 -         )
 -         if dataset.indexing_technique == "high_quality":
 -             # save vector index
 -             vector = Vector(dataset=dataset)
 -             vector.add_texts([child_document], duplicate_check=True)
 - 
 -     @classmethod
 -     def update_child_chunk_vector(
 -         cls,
 -         new_child_chunks: list[ChildChunk],
 -         update_child_chunks: list[ChildChunk],
 -         delete_child_chunks: list[ChildChunk],
 -         dataset: Dataset,
 -     ):
 -         documents = []
 -         delete_node_ids = []
 -         for new_child_chunk in new_child_chunks:
 -             new_child_document = Document(
 -                 page_content=new_child_chunk.content,
 -                 metadata={
 -                     "doc_id": new_child_chunk.index_node_id,
 -                     "doc_hash": new_child_chunk.index_node_hash,
 -                     "document_id": new_child_chunk.document_id,
 -                     "dataset_id": new_child_chunk.dataset_id,
 -                 },
 -             )
 -             documents.append(new_child_document)
 -         for update_child_chunk in update_child_chunks:
 -             child_document = Document(
 -                 page_content=update_child_chunk.content,
 -                 metadata={
 -                     "doc_id": update_child_chunk.index_node_id,
 -                     "doc_hash": update_child_chunk.index_node_hash,
 -                     "document_id": update_child_chunk.document_id,
 -                     "dataset_id": update_child_chunk.dataset_id,
 -                 },
 -             )
 -             documents.append(child_document)
 -             delete_node_ids.append(update_child_chunk.index_node_id)
 -         for delete_child_chunk in delete_child_chunks:
 -             delete_node_ids.append(delete_child_chunk.index_node_id)
 -         if dataset.indexing_technique == "high_quality":
 -             # update vector index
 -             vector = Vector(dataset=dataset)
 -             if delete_node_ids:
 -                 vector.delete_by_ids(delete_node_ids)
 -             if documents:
 -                 vector.add_texts(documents, duplicate_check=True)
 - 
 -     @classmethod
 -     def delete_child_chunk_vector(cls, child_chunk: ChildChunk, dataset: Dataset):
 -         vector = Vector(dataset=dataset)
 -         vector.delete_by_ids([child_chunk.index_node_id])
 
 
  |