| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300 | 
							- import json
 - from typing import Optional, Union
 - 
 - from core.app.apps.advanced_chat.app_config_manager import AdvancedChatAppConfigManager
 - from core.app.entities.app_invoke_entities import InvokeFrom
 - from core.llm_generator.llm_generator import LLMGenerator
 - from core.memory.token_buffer_memory import TokenBufferMemory
 - from core.model_manager import ModelManager
 - from core.model_runtime.entities.model_entities import ModelType
 - from core.ops.entities.trace_entity import TraceTaskName
 - from core.ops.ops_trace_manager import TraceQueueManager, TraceTask
 - from core.ops.utils import measure_time
 - from extensions.ext_database import db
 - from libs.infinite_scroll_pagination import InfiniteScrollPagination
 - from models.account import Account
 - from models.model import App, AppMode, AppModelConfig, EndUser, Message, MessageFeedback
 - from services.conversation_service import ConversationService
 - from services.errors.message import (
 -     FirstMessageNotExistsError,
 -     LastMessageNotExistsError,
 -     MessageNotExistsError,
 -     SuggestedQuestionsAfterAnswerDisabledError,
 - )
 - from services.workflow_service import WorkflowService
 - 
 - 
 - class MessageService:
 -     @classmethod
 -     def pagination_by_first_id(
 -         cls,
 -         app_model: App,
 -         user: Optional[Union[Account, EndUser]],
 -         conversation_id: str,
 -         first_id: Optional[str],
 -         limit: int,
 -         order: str = "asc",
 -     ) -> InfiniteScrollPagination:
 -         if not user:
 -             return InfiniteScrollPagination(data=[], limit=limit, has_more=False)
 - 
 -         if not conversation_id:
 -             return InfiniteScrollPagination(data=[], limit=limit, has_more=False)
 - 
 -         conversation = ConversationService.get_conversation(
 -             app_model=app_model, user=user, conversation_id=conversation_id
 -         )
 - 
 -         fetch_limit = limit + 1
 - 
 -         if first_id:
 -             first_message = (
 -                 db.session.query(Message)
 -                 .where(Message.conversation_id == conversation.id, Message.id == first_id)
 -                 .first()
 -             )
 - 
 -             if not first_message:
 -                 raise FirstMessageNotExistsError()
 - 
 -             history_messages = (
 -                 db.session.query(Message)
 -                 .where(
 -                     Message.conversation_id == conversation.id,
 -                     Message.created_at < first_message.created_at,
 -                     Message.id != first_message.id,
 -                 )
 -                 .order_by(Message.created_at.desc())
 -                 .limit(fetch_limit)
 -                 .all()
 -             )
 -         else:
 -             history_messages = (
 -                 db.session.query(Message)
 -                 .where(Message.conversation_id == conversation.id)
 -                 .order_by(Message.created_at.desc())
 -                 .limit(fetch_limit)
 -                 .all()
 -             )
 - 
 -         has_more = False
 -         if len(history_messages) > limit:
 -             has_more = True
 -             history_messages = history_messages[:-1]
 - 
 -         if order == "asc":
 -             history_messages = list(reversed(history_messages))
 - 
 -         return InfiniteScrollPagination(data=history_messages, limit=limit, has_more=has_more)
 - 
 -     @classmethod
 -     def pagination_by_last_id(
 -         cls,
 -         app_model: App,
 -         user: Optional[Union[Account, EndUser]],
 -         last_id: Optional[str],
 -         limit: int,
 -         conversation_id: Optional[str] = None,
 -         include_ids: Optional[list] = None,
 -     ) -> InfiniteScrollPagination:
 -         if not user:
 -             return InfiniteScrollPagination(data=[], limit=limit, has_more=False)
 - 
 -         base_query = db.session.query(Message)
 - 
 -         fetch_limit = limit + 1
 - 
 -         if conversation_id is not None:
 -             conversation = ConversationService.get_conversation(
 -                 app_model=app_model, user=user, conversation_id=conversation_id
 -             )
 - 
 -             base_query = base_query.where(Message.conversation_id == conversation.id)
 - 
 -         # Check if include_ids is not None and not empty to avoid WHERE false condition
 -         if include_ids is not None:
 -             if len(include_ids) == 0:
 -                 return InfiniteScrollPagination(data=[], limit=limit, has_more=False)
 -             base_query = base_query.where(Message.id.in_(include_ids))
 - 
 -         if last_id:
 -             last_message = base_query.where(Message.id == last_id).first()
 - 
 -             if not last_message:
 -                 raise LastMessageNotExistsError()
 - 
 -             history_messages = (
 -                 base_query.where(Message.created_at < last_message.created_at, Message.id != last_message.id)
 -                 .order_by(Message.created_at.desc())
 -                 .limit(fetch_limit)
 -                 .all()
 -             )
 -         else:
 -             history_messages = base_query.order_by(Message.created_at.desc()).limit(fetch_limit).all()
 - 
 -         has_more = False
 -         if len(history_messages) > limit:
 -             has_more = True
 -             history_messages = history_messages[:-1]
 - 
 -         return InfiniteScrollPagination(data=history_messages, limit=limit, has_more=has_more)
 - 
 -     @classmethod
 -     def create_feedback(
 -         cls,
 -         *,
 -         app_model: App,
 -         message_id: str,
 -         user: Optional[Union[Account, EndUser]],
 -         rating: Optional[str],
 -         content: Optional[str],
 -     ):
 -         if not user:
 -             raise ValueError("user cannot be None")
 - 
 -         message = cls.get_message(app_model=app_model, user=user, message_id=message_id)
 - 
 -         feedback = message.user_feedback if isinstance(user, EndUser) else message.admin_feedback
 - 
 -         if not rating and feedback:
 -             db.session.delete(feedback)
 -         elif rating and feedback:
 -             feedback.rating = rating
 -             feedback.content = content
 -         elif not rating and not feedback:
 -             raise ValueError("rating cannot be None when feedback not exists")
 -         else:
 -             feedback = MessageFeedback(
 -                 app_id=app_model.id,
 -                 conversation_id=message.conversation_id,
 -                 message_id=message.id,
 -                 rating=rating,
 -                 content=content,
 -                 from_source=("user" if isinstance(user, EndUser) else "admin"),
 -                 from_end_user_id=(user.id if isinstance(user, EndUser) else None),
 -                 from_account_id=(user.id if isinstance(user, Account) else None),
 -             )
 -             db.session.add(feedback)
 - 
 -         db.session.commit()
 - 
 -         return feedback
 - 
 -     @classmethod
 -     def get_all_messages_feedbacks(cls, app_model: App, page: int, limit: int):
 -         """Get all feedbacks of an app"""
 -         offset = (page - 1) * limit
 -         feedbacks = (
 -             db.session.query(MessageFeedback)
 -             .where(MessageFeedback.app_id == app_model.id)
 -             .order_by(MessageFeedback.created_at.desc(), MessageFeedback.id.desc())
 -             .limit(limit)
 -             .offset(offset)
 -             .all()
 -         )
 - 
 -         return [record.to_dict() for record in feedbacks]
 - 
 -     @classmethod
 -     def get_message(cls, app_model: App, user: Optional[Union[Account, EndUser]], message_id: str):
 -         message = (
 -             db.session.query(Message)
 -             .where(
 -                 Message.id == message_id,
 -                 Message.app_id == app_model.id,
 -                 Message.from_source == ("api" if isinstance(user, EndUser) else "console"),
 -                 Message.from_end_user_id == (user.id if isinstance(user, EndUser) else None),
 -                 Message.from_account_id == (user.id if isinstance(user, Account) else None),
 -             )
 -             .first()
 -         )
 - 
 -         if not message:
 -             raise MessageNotExistsError()
 - 
 -         return message
 - 
 -     @classmethod
 -     def get_suggested_questions_after_answer(
 -         cls, app_model: App, user: Optional[Union[Account, EndUser]], message_id: str, invoke_from: InvokeFrom
 -     ) -> list[Message]:
 -         if not user:
 -             raise ValueError("user cannot be None")
 - 
 -         message = cls.get_message(app_model=app_model, user=user, message_id=message_id)
 - 
 -         conversation = ConversationService.get_conversation(
 -             app_model=app_model, conversation_id=message.conversation_id, user=user
 -         )
 - 
 -         model_manager = ModelManager()
 - 
 -         if app_model.mode == AppMode.ADVANCED_CHAT.value:
 -             workflow_service = WorkflowService()
 -             if invoke_from == InvokeFrom.DEBUGGER:
 -                 workflow = workflow_service.get_draft_workflow(app_model=app_model)
 -             else:
 -                 workflow = workflow_service.get_published_workflow(app_model=app_model)
 - 
 -             if workflow is None:
 -                 return []
 - 
 -             app_config = AdvancedChatAppConfigManager.get_app_config(app_model=app_model, workflow=workflow)
 - 
 -             if not app_config.additional_features.suggested_questions_after_answer:
 -                 raise SuggestedQuestionsAfterAnswerDisabledError()
 - 
 -             model_instance = model_manager.get_default_model_instance(
 -                 tenant_id=app_model.tenant_id, model_type=ModelType.LLM
 -             )
 -         else:
 -             if not conversation.override_model_configs:
 -                 app_model_config = (
 -                     db.session.query(AppModelConfig)
 -                     .where(AppModelConfig.id == conversation.app_model_config_id, AppModelConfig.app_id == app_model.id)
 -                     .first()
 -                 )
 -             else:
 -                 conversation_override_model_configs = json.loads(conversation.override_model_configs)
 -                 app_model_config = AppModelConfig(
 -                     id=conversation.app_model_config_id,
 -                     app_id=app_model.id,
 -                 )
 - 
 -                 app_model_config = app_model_config.from_model_config_dict(conversation_override_model_configs)
 -             if not app_model_config:
 -                 raise ValueError("did not find app model config")
 - 
 -             suggested_questions_after_answer = app_model_config.suggested_questions_after_answer_dict
 -             if suggested_questions_after_answer.get("enabled", False) is False:
 -                 raise SuggestedQuestionsAfterAnswerDisabledError()
 - 
 -             model_instance = model_manager.get_model_instance(
 -                 tenant_id=app_model.tenant_id,
 -                 provider=app_model_config.model_dict["provider"],
 -                 model_type=ModelType.LLM,
 -                 model=app_model_config.model_dict["name"],
 -             )
 - 
 -         # get memory of conversation (read-only)
 -         memory = TokenBufferMemory(conversation=conversation, model_instance=model_instance)
 - 
 -         histories = memory.get_history_prompt_text(
 -             max_token_limit=3000,
 -             message_limit=3,
 -         )
 - 
 -         with measure_time() as timer:
 -             questions: list[Message] = LLMGenerator.generate_suggested_questions_after_answer(
 -                 tenant_id=app_model.tenant_id, histories=histories
 -             )
 - 
 -         # get tracing instance
 -         trace_manager = TraceQueueManager(app_id=app_model.id)
 -         trace_manager.add_trace_task(
 -             TraceTask(
 -                 TraceTaskName.SUGGESTED_QUESTION_TRACE, message_id=message_id, suggested_question=questions, timer=timer
 -             )
 -         )
 - 
 -         return questions
 
 
  |