Nevar pievienot vairāk kā 25 tēmas Tēmai ir jāsākas ar burtu vai ciparu, tā var saturēt domu zīmes ('-') un var būt līdz 35 simboliem gara.
-LAN- c6996a48a4
refactor(api/core/app/segments): Support more kinds of Segments. (#6706)
pirms 1 gada
..
configs Enhance database URI security and add URL encoding (#6668) pirms 1 gada
constants Feat/environment variables in workflow (#6515) pirms 1 gada
contexts Feat/environment variables in workflow (#6515) pirms 1 gada
controllers chore: make prompt generator max tokens configurable (#6693) pirms 1 gada
core refactor(api/core/app/segments): Support more kinds of Segments. (#6706) pirms 1 gada
docker fix: kill signal is not passed to the main process (#6159) pirms 1 gada
events Feat/delete file when clean document (#5882) pirms 1 gada
extensions fix tencent_cos_storage image-preview error is not a byte (#6652) pirms 1 gada
fields fix(api/fields/workflow_fields.py): Add check in environment variables (#6621) pirms 1 gada
libs fix(api/services/app_generate_service.py): Remove wrong type hints. (#6535) pirms 1 gada
migrations Fix/6615 40 varchar limit on model name (#6623) pirms 1 gada
models Fix/6615 40 varchar limit on model name (#6623) pirms 1 gada
schedule Feat/environment variables in workflow (#6515) pirms 1 gada
services chore: optimize asynchronous deletion performance of app related data (#6634) pirms 1 gada
tasks chore: optimize asynchronous workflow deletion performance of app related data (#6639) pirms 1 gada
templates feat: implement forgot password feature (#5534) pirms 1 gada
tests refactor(api/core/app/segments): Support more kinds of Segments. (#6706) pirms 1 gada
.dockerignore build: support Poetry for depencencies tool in api's Dockerfile (#5105) pirms 1 gada
.env.example chore: make prompt generator max tokens configurable (#6693) pirms 1 gada
Dockerfile chore: skip pip upgrade preparation in api dockerfile (#5999) pirms 1 gada
README.md Chores: add missing profile for middleware docker compose cmd and fix ssrf-proxy doc link (#6372) pirms 1 gada
app.py Feat/environment variables in workflow (#6515) pirms 1 gada
commands.py feat: support AnalyticDB vector store (#5586) pirms 1 gada
poetry.lock Feat/delete single dataset retrival (#6570) pirms 1 gada
poetry.toml build: initial support for poetry build tool (#4513) pirms 1 gada
pyproject.toml Feat/delete single dataset retrival (#6570) pirms 1 gada

README.md

Dify Backend API

Usage

[!IMPORTANT] In the v0.6.12 release, we deprecated pip as the package management tool for Dify API Backend service and replaced it with poetry.

  1. Start the docker-compose stack

The backend require some middleware, including PostgreSQL, Redis, and Weaviate, which can be started together using docker-compose.

   cd ../docker
   cp middleware.env.example middleware.env
   # change the profile to other vector database if you are not using weaviate
   docker compose -f docker-compose.middleware.yaml --profile weaviate -p dify up -d
   cd ../api
  1. Copy .env.example to .env
  2. Generate a SECRET_KEY in the .env file.
   sed -i "/^SECRET_KEY=/c\SECRET_KEY=$(openssl rand -base64 42)" .env
   secret_key=$(openssl rand -base64 42)
   sed -i '' "/^SECRET_KEY=/c\\
   SECRET_KEY=${secret_key}" .env
  1. Create environment.

Dify API service uses Poetry to manage dependencies. You can execute poetry shell to activate the environment.

  1. Install dependencies
   poetry env use 3.10
   poetry install

In case of contributors missing to update dependencies for pyproject.toml, you can perform the following shell instead.

   poetry shell                                               # activate current environment
   poetry add $(cat requirements.txt)           # install dependencies of production and update pyproject.toml
   poetry add $(cat requirements-dev.txt) --group dev    # install dependencies of development and update pyproject.toml
  1. Run migrate

Before the first launch, migrate the database to the latest version.

   poetry run python -m flask db upgrade
  1. Start backend
   poetry run python -m flask run --host 0.0.0.0 --port=5001 --debug
  1. Start Dify web service.
  2. Setup your application by visiting http://localhost:3000
  3. If you need to debug local async processing, please start the worker service.
   poetry run python -m celery -A app.celery worker -P gevent -c 1 --loglevel INFO -Q dataset,generation,mail,ops_trace,app_deletion

The started celery app handles the async tasks, e.g. dataset importing and documents indexing.

Testing

  1. Install dependencies for both the backend and the test environment
   poetry install --with dev
  1. Run the tests locally with mocked system environment variables in tool.pytest_env section in pyproject.toml
   cd ../
   poetry run -C api bash dev/pytest/pytest_all_tests.sh