您最多选择25个主题 主题必须以字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
kurokobo c0b71f8286
feat: respect x-* headers for redirections (#9054)
1年前
..
.idea fix nltk averaged_perceptron_tagger download and fix score limit is none (#7582) 1年前
.vscode chore: remove .idea and .vscode from root path (#7437) 1年前
configs feat: respect x-* headers for redirections (#9054) 1年前
constants feat: regenerate in `Chat`, `agent` and `Chatflow` app (#7661) 1年前
contexts chore(api): Introduce Ruff Formatter. (#7291) 1年前
controllers fix: Count exception occurs when searching conversations (#8754) 1年前
core chore: avoid implicit optional in type annotations of method (#8727) 1年前
docker fix: use LOG_LEVEL for celery startup (#7628) 1年前
events chore: bump ruff to 0.6.8 for fixing violation in SIM910 (#8869) 1年前
extensions feat: respect x-* headers for redirections (#9054) 1年前
fields external knowledge api (#8913) 1年前
libs chore: avoid implicit optional in type annotations of method (#8727) 1年前
migrations external knowledge api (#8913) 1年前
models external knowledge api (#8913) 1年前
schedule external knowledge api (#8913) 1年前
services chore: avoid implicit optional in type annotations of method (#8727) 1年前
tasks external knowledge api (#8913) 1年前
templates feat: implement forgot password feature (#5534) 1年前
tests chore: avoid implicit optional in type annotations of method (#8727) 1年前
.dockerignore build: support Poetry for depencencies tool in api's Dockerfile (#5105) 1年前
.env.example feat: respect x-* headers for redirections (#9054) 1年前
Dockerfile fix: Version '2.6.2-2' for 'expat' was not found (#8182) 1年前
README.md Enhance Readme Documentation to Clarify the Importance of Celery Service (#8558) 1年前
app.py feat: respect x-* headers for redirections (#9054) 1年前
commands.py fix: typos and improve naming conventions: (#8687) 1年前
poetry.lock refactor: introduce storage factory and speed up api startup by importing storage client on demand (#9086) 1年前
poetry.toml build: initial support for poetry build tool (#4513) 1年前
pyproject.toml chore: avoid implicit optional in type annotations of method (#8727) 1年前
pytest.ini chore: move testing env variables from pyproject.toml to pytest.ini (#9019) 1年前

README.md

Dify Backend API

Usage

[!IMPORTANT] In the v0.6.12 release, we deprecated pip as the package management tool for Dify API Backend service and replaced it with poetry.

  1. Start the docker-compose stack

The backend require some middleware, including PostgreSQL, Redis, and Weaviate, which can be started together using docker-compose.

   cd ../docker
   cp middleware.env.example middleware.env
   # change the profile to other vector database if you are not using weaviate
   docker compose -f docker-compose.middleware.yaml --profile weaviate -p dify up -d
   cd ../api
  1. Copy .env.example to .env
  2. Generate a SECRET_KEY in the .env file.
   sed -i "/^SECRET_KEY=/c\SECRET_KEY=$(openssl rand -base64 42)" .env
   secret_key=$(openssl rand -base64 42)
   sed -i '' "/^SECRET_KEY=/c\\
   SECRET_KEY=${secret_key}" .env
  1. Create environment.

Dify API service uses Poetry to manage dependencies. You can execute poetry shell to activate the environment.

  1. Install dependencies
   poetry env use 3.10
   poetry install

In case of contributors missing to update dependencies for pyproject.toml, you can perform the following shell instead.

   poetry shell                                               # activate current environment
   poetry add $(cat requirements.txt)           # install dependencies of production and update pyproject.toml
   poetry add $(cat requirements-dev.txt) --group dev    # install dependencies of development and update pyproject.toml
  1. Run migrate

Before the first launch, migrate the database to the latest version.

   poetry run python -m flask db upgrade
  1. Start backend
   poetry run python -m flask run --host 0.0.0.0 --port=5001 --debug
  1. Start Dify web service.
  2. Setup your application by visiting http://localhost:3000
  3. If you need to handle and debug the async tasks (e.g. dataset importing and documents indexing), please start the worker service.
   poetry run python -m celery -A app.celery worker -P gevent -c 1 --loglevel INFO -Q dataset,generation,mail,ops_trace,app_deletion

Testing

  1. Install dependencies for both the backend and the test environment
   poetry install --with dev
  1. Run the tests locally with mocked system environment variables in tool.pytest_env section in pyproject.toml
   cd ../
   poetry run -C api bash dev/pytest/pytest_all_tests.sh