You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

vector_service.py 9.7KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229
  1. import logging
  2. from typing import Optional
  3. from core.model_manager import ModelInstance, ModelManager
  4. from core.model_runtime.entities.model_entities import ModelType
  5. from core.rag.datasource.keyword.keyword_factory import Keyword
  6. from core.rag.datasource.vdb.vector_factory import Vector
  7. from core.rag.index_processor.constant.index_type import IndexType
  8. from core.rag.index_processor.index_processor_factory import IndexProcessorFactory
  9. from core.rag.models.document import Document
  10. from extensions.ext_database import db
  11. from models.dataset import ChildChunk, Dataset, DatasetProcessRule, DocumentSegment
  12. from models.dataset import Document as DatasetDocument
  13. from services.entities.knowledge_entities.knowledge_entities import ParentMode
  14. _logger = logging.getLogger(__name__)
  15. class VectorService:
  16. @classmethod
  17. def create_segments_vector(
  18. cls, keywords_list: Optional[list[list[str]]], segments: list[DocumentSegment], dataset: Dataset, doc_form: str
  19. ):
  20. documents: list[Document] = []
  21. for segment in segments:
  22. if doc_form == IndexType.PARENT_CHILD_INDEX:
  23. dataset_document = db.session.query(DatasetDocument).filter_by(id=segment.document_id).first()
  24. if not dataset_document:
  25. _logger.warning(
  26. "Expected DatasetDocument record to exist, but none was found, document_id=%s, segment_id=%s",
  27. segment.document_id,
  28. segment.id,
  29. )
  30. continue
  31. # get the process rule
  32. processing_rule = (
  33. db.session.query(DatasetProcessRule)
  34. .filter(DatasetProcessRule.id == dataset_document.dataset_process_rule_id)
  35. .first()
  36. )
  37. if not processing_rule:
  38. raise ValueError("No processing rule found.")
  39. # get embedding model instance
  40. if dataset.indexing_technique == "high_quality":
  41. # check embedding model setting
  42. model_manager = ModelManager()
  43. if dataset.embedding_model_provider:
  44. embedding_model_instance = model_manager.get_model_instance(
  45. tenant_id=dataset.tenant_id,
  46. provider=dataset.embedding_model_provider,
  47. model_type=ModelType.TEXT_EMBEDDING,
  48. model=dataset.embedding_model,
  49. )
  50. else:
  51. embedding_model_instance = model_manager.get_default_model_instance(
  52. tenant_id=dataset.tenant_id,
  53. model_type=ModelType.TEXT_EMBEDDING,
  54. )
  55. else:
  56. raise ValueError("The knowledge base index technique is not high quality!")
  57. cls.generate_child_chunks(
  58. segment, dataset_document, dataset, embedding_model_instance, processing_rule, False
  59. )
  60. else:
  61. rag_document = Document(
  62. page_content=segment.content,
  63. metadata={
  64. "doc_id": segment.index_node_id,
  65. "doc_hash": segment.index_node_hash,
  66. "document_id": segment.document_id,
  67. "dataset_id": segment.dataset_id,
  68. },
  69. )
  70. documents.append(rag_document)
  71. if len(documents) > 0:
  72. index_processor = IndexProcessorFactory(doc_form).init_index_processor()
  73. index_processor.load(dataset, documents, with_keywords=True, keywords_list=keywords_list)
  74. @classmethod
  75. def update_segment_vector(cls, keywords: Optional[list[str]], segment: DocumentSegment, dataset: Dataset):
  76. # update segment index task
  77. # format new index
  78. document = Document(
  79. page_content=segment.content,
  80. metadata={
  81. "doc_id": segment.index_node_id,
  82. "doc_hash": segment.index_node_hash,
  83. "document_id": segment.document_id,
  84. "dataset_id": segment.dataset_id,
  85. },
  86. )
  87. if dataset.indexing_technique == "high_quality":
  88. # update vector index
  89. vector = Vector(dataset=dataset)
  90. vector.delete_by_ids([segment.index_node_id])
  91. vector.add_texts([document], duplicate_check=True)
  92. else:
  93. # update keyword index
  94. keyword = Keyword(dataset)
  95. keyword.delete_by_ids([segment.index_node_id])
  96. # save keyword index
  97. if keywords and len(keywords) > 0:
  98. keyword.add_texts([document], keywords_list=[keywords])
  99. else:
  100. keyword.add_texts([document])
  101. @classmethod
  102. def generate_child_chunks(
  103. cls,
  104. segment: DocumentSegment,
  105. dataset_document: DatasetDocument,
  106. dataset: Dataset,
  107. embedding_model_instance: ModelInstance,
  108. processing_rule: DatasetProcessRule,
  109. regenerate: bool = False,
  110. ):
  111. index_processor = IndexProcessorFactory(dataset.doc_form).init_index_processor()
  112. if regenerate:
  113. # delete child chunks
  114. index_processor.clean(dataset, [segment.index_node_id], with_keywords=True, delete_child_chunks=True)
  115. # generate child chunks
  116. document = Document(
  117. page_content=segment.content,
  118. metadata={
  119. "doc_id": segment.index_node_id,
  120. "doc_hash": segment.index_node_hash,
  121. "document_id": segment.document_id,
  122. "dataset_id": segment.dataset_id,
  123. },
  124. )
  125. # use full doc mode to generate segment's child chunk
  126. processing_rule_dict = processing_rule.to_dict()
  127. processing_rule_dict["rules"]["parent_mode"] = ParentMode.FULL_DOC.value
  128. documents = index_processor.transform(
  129. [document],
  130. embedding_model_instance=embedding_model_instance,
  131. process_rule=processing_rule_dict,
  132. tenant_id=dataset.tenant_id,
  133. doc_language=dataset_document.doc_language,
  134. )
  135. # save child chunks
  136. if documents and documents[0].children:
  137. index_processor.load(dataset, documents)
  138. for position, child_chunk in enumerate(documents[0].children, start=1):
  139. child_segment = ChildChunk(
  140. tenant_id=dataset.tenant_id,
  141. dataset_id=dataset.id,
  142. document_id=dataset_document.id,
  143. segment_id=segment.id,
  144. position=position,
  145. index_node_id=child_chunk.metadata["doc_id"],
  146. index_node_hash=child_chunk.metadata["doc_hash"],
  147. content=child_chunk.page_content,
  148. word_count=len(child_chunk.page_content),
  149. type="automatic",
  150. created_by=dataset_document.created_by,
  151. )
  152. db.session.add(child_segment)
  153. db.session.commit()
  154. @classmethod
  155. def create_child_chunk_vector(cls, child_segment: ChildChunk, dataset: Dataset):
  156. child_document = Document(
  157. page_content=child_segment.content,
  158. metadata={
  159. "doc_id": child_segment.index_node_id,
  160. "doc_hash": child_segment.index_node_hash,
  161. "document_id": child_segment.document_id,
  162. "dataset_id": child_segment.dataset_id,
  163. },
  164. )
  165. if dataset.indexing_technique == "high_quality":
  166. # save vector index
  167. vector = Vector(dataset=dataset)
  168. vector.add_texts([child_document], duplicate_check=True)
  169. @classmethod
  170. def update_child_chunk_vector(
  171. cls,
  172. new_child_chunks: list[ChildChunk],
  173. update_child_chunks: list[ChildChunk],
  174. delete_child_chunks: list[ChildChunk],
  175. dataset: Dataset,
  176. ):
  177. documents = []
  178. delete_node_ids = []
  179. for new_child_chunk in new_child_chunks:
  180. new_child_document = Document(
  181. page_content=new_child_chunk.content,
  182. metadata={
  183. "doc_id": new_child_chunk.index_node_id,
  184. "doc_hash": new_child_chunk.index_node_hash,
  185. "document_id": new_child_chunk.document_id,
  186. "dataset_id": new_child_chunk.dataset_id,
  187. },
  188. )
  189. documents.append(new_child_document)
  190. for update_child_chunk in update_child_chunks:
  191. child_document = Document(
  192. page_content=update_child_chunk.content,
  193. metadata={
  194. "doc_id": update_child_chunk.index_node_id,
  195. "doc_hash": update_child_chunk.index_node_hash,
  196. "document_id": update_child_chunk.document_id,
  197. "dataset_id": update_child_chunk.dataset_id,
  198. },
  199. )
  200. documents.append(child_document)
  201. delete_node_ids.append(update_child_chunk.index_node_id)
  202. for delete_child_chunk in delete_child_chunks:
  203. delete_node_ids.append(delete_child_chunk.index_node_id)
  204. if dataset.indexing_technique == "high_quality":
  205. # update vector index
  206. vector = Vector(dataset=dataset)
  207. if delete_node_ids:
  208. vector.delete_by_ids(delete_node_ids)
  209. if documents:
  210. vector.add_texts(documents, duplicate_check=True)
  211. @classmethod
  212. def delete_child_chunk_vector(cls, child_chunk: ChildChunk, dataset: Dataset):
  213. vector = Vector(dataset=dataset)
  214. vector.delete_by_ids([child_chunk.index_node_id])