You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

fc_agent_runner.py 19KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463
  1. import json
  2. import logging
  3. from collections.abc import Generator
  4. from copy import deepcopy
  5. from typing import Any, Optional, Union
  6. from core.agent.base_agent_runner import BaseAgentRunner
  7. from core.app.apps.base_app_queue_manager import PublishFrom
  8. from core.app.entities.queue_entities import QueueAgentThoughtEvent, QueueMessageEndEvent, QueueMessageFileEvent
  9. from core.file import file_manager
  10. from core.model_runtime.entities import (
  11. AssistantPromptMessage,
  12. LLMResult,
  13. LLMResultChunk,
  14. LLMResultChunkDelta,
  15. LLMUsage,
  16. PromptMessage,
  17. PromptMessageContentType,
  18. SystemPromptMessage,
  19. TextPromptMessageContent,
  20. ToolPromptMessage,
  21. UserPromptMessage,
  22. )
  23. from core.model_runtime.entities.message_entities import ImagePromptMessageContent, PromptMessageContentUnionTypes
  24. from core.prompt.agent_history_prompt_transform import AgentHistoryPromptTransform
  25. from core.tools.entities.tool_entities import ToolInvokeMeta
  26. from core.tools.tool_engine import ToolEngine
  27. from models.model import Message
  28. logger = logging.getLogger(__name__)
  29. class FunctionCallAgentRunner(BaseAgentRunner):
  30. def run(self, message: Message, query: str, **kwargs: Any) -> Generator[LLMResultChunk, None, None]:
  31. """
  32. Run FunctionCall agent application
  33. """
  34. self.query = query
  35. app_generate_entity = self.application_generate_entity
  36. app_config = self.app_config
  37. assert app_config is not None, "app_config is required"
  38. assert app_config.agent is not None, "app_config.agent is required"
  39. # convert tools into ModelRuntime Tool format
  40. tool_instances, prompt_messages_tools = self._init_prompt_tools()
  41. assert app_config.agent
  42. iteration_step = 1
  43. max_iteration_steps = min(app_config.agent.max_iteration, 5) + 1
  44. # continue to run until there is not any tool call
  45. function_call_state = True
  46. llm_usage: dict[str, Optional[LLMUsage]] = {"usage": None}
  47. final_answer = ""
  48. # get tracing instance
  49. trace_manager = app_generate_entity.trace_manager
  50. def increase_usage(final_llm_usage_dict: dict[str, Optional[LLMUsage]], usage: LLMUsage):
  51. if not final_llm_usage_dict["usage"]:
  52. final_llm_usage_dict["usage"] = usage
  53. else:
  54. llm_usage = final_llm_usage_dict["usage"]
  55. llm_usage.prompt_tokens += usage.prompt_tokens
  56. llm_usage.completion_tokens += usage.completion_tokens
  57. llm_usage.prompt_price += usage.prompt_price
  58. llm_usage.completion_price += usage.completion_price
  59. llm_usage.total_price += usage.total_price
  60. model_instance = self.model_instance
  61. while function_call_state and iteration_step <= max_iteration_steps:
  62. function_call_state = False
  63. if iteration_step == max_iteration_steps:
  64. # the last iteration, remove all tools
  65. prompt_messages_tools = []
  66. message_file_ids: list[str] = []
  67. agent_thought = self.create_agent_thought(
  68. message_id=message.id, message="", tool_name="", tool_input="", messages_ids=message_file_ids
  69. )
  70. # recalc llm max tokens
  71. prompt_messages = self._organize_prompt_messages()
  72. self.recalc_llm_max_tokens(self.model_config, prompt_messages)
  73. # invoke model
  74. chunks: Union[Generator[LLMResultChunk, None, None], LLMResult] = model_instance.invoke_llm(
  75. prompt_messages=prompt_messages,
  76. model_parameters=app_generate_entity.model_conf.parameters,
  77. tools=prompt_messages_tools,
  78. stop=app_generate_entity.model_conf.stop,
  79. stream=self.stream_tool_call,
  80. user=self.user_id,
  81. callbacks=[],
  82. )
  83. tool_calls: list[tuple[str, str, dict[str, Any]]] = []
  84. # save full response
  85. response = ""
  86. # save tool call names and inputs
  87. tool_call_names = ""
  88. tool_call_inputs = ""
  89. current_llm_usage = None
  90. if isinstance(chunks, Generator):
  91. is_first_chunk = True
  92. for chunk in chunks:
  93. if is_first_chunk:
  94. self.queue_manager.publish(
  95. QueueAgentThoughtEvent(agent_thought_id=agent_thought.id), PublishFrom.APPLICATION_MANAGER
  96. )
  97. is_first_chunk = False
  98. # check if there is any tool call
  99. if self.check_tool_calls(chunk):
  100. function_call_state = True
  101. tool_calls.extend(self.extract_tool_calls(chunk) or [])
  102. tool_call_names = ";".join([tool_call[1] for tool_call in tool_calls])
  103. try:
  104. tool_call_inputs = json.dumps(
  105. {tool_call[1]: tool_call[2] for tool_call in tool_calls}, ensure_ascii=False
  106. )
  107. except json.JSONDecodeError:
  108. # ensure ascii to avoid encoding error
  109. tool_call_inputs = json.dumps({tool_call[1]: tool_call[2] for tool_call in tool_calls})
  110. if chunk.delta.message and chunk.delta.message.content:
  111. if isinstance(chunk.delta.message.content, list):
  112. for content in chunk.delta.message.content:
  113. response += content.data
  114. else:
  115. response += str(chunk.delta.message.content)
  116. if chunk.delta.usage:
  117. increase_usage(llm_usage, chunk.delta.usage)
  118. current_llm_usage = chunk.delta.usage
  119. yield chunk
  120. else:
  121. result = chunks
  122. # check if there is any tool call
  123. if self.check_blocking_tool_calls(result):
  124. function_call_state = True
  125. tool_calls.extend(self.extract_blocking_tool_calls(result) or [])
  126. tool_call_names = ";".join([tool_call[1] for tool_call in tool_calls])
  127. try:
  128. tool_call_inputs = json.dumps(
  129. {tool_call[1]: tool_call[2] for tool_call in tool_calls}, ensure_ascii=False
  130. )
  131. except json.JSONDecodeError:
  132. # ensure ascii to avoid encoding error
  133. tool_call_inputs = json.dumps({tool_call[1]: tool_call[2] for tool_call in tool_calls})
  134. if result.usage:
  135. increase_usage(llm_usage, result.usage)
  136. current_llm_usage = result.usage
  137. if result.message and result.message.content:
  138. if isinstance(result.message.content, list):
  139. for content in result.message.content:
  140. response += content.data
  141. else:
  142. response += str(result.message.content)
  143. if not result.message.content:
  144. result.message.content = ""
  145. self.queue_manager.publish(
  146. QueueAgentThoughtEvent(agent_thought_id=agent_thought.id), PublishFrom.APPLICATION_MANAGER
  147. )
  148. yield LLMResultChunk(
  149. model=model_instance.model,
  150. prompt_messages=result.prompt_messages,
  151. system_fingerprint=result.system_fingerprint,
  152. delta=LLMResultChunkDelta(
  153. index=0,
  154. message=result.message,
  155. usage=result.usage,
  156. ),
  157. )
  158. assistant_message = AssistantPromptMessage(content="", tool_calls=[])
  159. if tool_calls:
  160. assistant_message.tool_calls = [
  161. AssistantPromptMessage.ToolCall(
  162. id=tool_call[0],
  163. type="function",
  164. function=AssistantPromptMessage.ToolCall.ToolCallFunction(
  165. name=tool_call[1], arguments=json.dumps(tool_call[2], ensure_ascii=False)
  166. ),
  167. )
  168. for tool_call in tool_calls
  169. ]
  170. else:
  171. assistant_message.content = response
  172. self._current_thoughts.append(assistant_message)
  173. # save thought
  174. self.save_agent_thought(
  175. agent_thought=agent_thought,
  176. tool_name=tool_call_names,
  177. tool_input=tool_call_inputs,
  178. thought=response,
  179. tool_invoke_meta=None,
  180. observation=None,
  181. answer=response,
  182. messages_ids=[],
  183. llm_usage=current_llm_usage,
  184. )
  185. self.queue_manager.publish(
  186. QueueAgentThoughtEvent(agent_thought_id=agent_thought.id), PublishFrom.APPLICATION_MANAGER
  187. )
  188. final_answer += response + "\n"
  189. # call tools
  190. tool_responses = []
  191. for tool_call_id, tool_call_name, tool_call_args in tool_calls:
  192. tool_instance = tool_instances.get(tool_call_name)
  193. if not tool_instance:
  194. tool_response = {
  195. "tool_call_id": tool_call_id,
  196. "tool_call_name": tool_call_name,
  197. "tool_response": f"there is not a tool named {tool_call_name}",
  198. "meta": ToolInvokeMeta.error_instance(f"there is not a tool named {tool_call_name}").to_dict(),
  199. }
  200. else:
  201. # invoke tool
  202. tool_invoke_response, message_files, tool_invoke_meta = ToolEngine.agent_invoke(
  203. tool=tool_instance,
  204. tool_parameters=tool_call_args,
  205. user_id=self.user_id,
  206. tenant_id=self.tenant_id,
  207. message=self.message,
  208. invoke_from=self.application_generate_entity.invoke_from,
  209. agent_tool_callback=self.agent_callback,
  210. trace_manager=trace_manager,
  211. app_id=self.application_generate_entity.app_config.app_id,
  212. message_id=self.message.id,
  213. conversation_id=self.conversation.id,
  214. )
  215. # publish files
  216. for message_file_id in message_files:
  217. # publish message file
  218. self.queue_manager.publish(
  219. QueueMessageFileEvent(message_file_id=message_file_id), PublishFrom.APPLICATION_MANAGER
  220. )
  221. # add message file ids
  222. message_file_ids.append(message_file_id)
  223. tool_response = {
  224. "tool_call_id": tool_call_id,
  225. "tool_call_name": tool_call_name,
  226. "tool_response": tool_invoke_response,
  227. "meta": tool_invoke_meta.to_dict(),
  228. }
  229. tool_responses.append(tool_response)
  230. if tool_response["tool_response"] is not None:
  231. self._current_thoughts.append(
  232. ToolPromptMessage(
  233. content=str(tool_response["tool_response"]),
  234. tool_call_id=tool_call_id,
  235. name=tool_call_name,
  236. )
  237. )
  238. if len(tool_responses) > 0:
  239. # save agent thought
  240. self.save_agent_thought(
  241. agent_thought=agent_thought,
  242. tool_name="",
  243. tool_input="",
  244. thought="",
  245. tool_invoke_meta={
  246. tool_response["tool_call_name"]: tool_response["meta"] for tool_response in tool_responses
  247. },
  248. observation={
  249. tool_response["tool_call_name"]: tool_response["tool_response"]
  250. for tool_response in tool_responses
  251. },
  252. answer="",
  253. messages_ids=message_file_ids,
  254. )
  255. self.queue_manager.publish(
  256. QueueAgentThoughtEvent(agent_thought_id=agent_thought.id), PublishFrom.APPLICATION_MANAGER
  257. )
  258. # update prompt tool
  259. for prompt_tool in prompt_messages_tools:
  260. self.update_prompt_message_tool(tool_instances[prompt_tool.name], prompt_tool)
  261. iteration_step += 1
  262. # publish end event
  263. self.queue_manager.publish(
  264. QueueMessageEndEvent(
  265. llm_result=LLMResult(
  266. model=model_instance.model,
  267. prompt_messages=prompt_messages,
  268. message=AssistantPromptMessage(content=final_answer),
  269. usage=llm_usage["usage"] or LLMUsage.empty_usage(),
  270. system_fingerprint="",
  271. )
  272. ),
  273. PublishFrom.APPLICATION_MANAGER,
  274. )
  275. def check_tool_calls(self, llm_result_chunk: LLMResultChunk) -> bool:
  276. """
  277. Check if there is any tool call in llm result chunk
  278. """
  279. if llm_result_chunk.delta.message.tool_calls:
  280. return True
  281. return False
  282. def check_blocking_tool_calls(self, llm_result: LLMResult) -> bool:
  283. """
  284. Check if there is any blocking tool call in llm result
  285. """
  286. if llm_result.message.tool_calls:
  287. return True
  288. return False
  289. def extract_tool_calls(self, llm_result_chunk: LLMResultChunk) -> list[tuple[str, str, dict[str, Any]]]:
  290. """
  291. Extract tool calls from llm result chunk
  292. Returns:
  293. List[Tuple[str, str, Dict[str, Any]]]: [(tool_call_id, tool_call_name, tool_call_args)]
  294. """
  295. tool_calls = []
  296. for prompt_message in llm_result_chunk.delta.message.tool_calls:
  297. args = {}
  298. if prompt_message.function.arguments != "":
  299. args = json.loads(prompt_message.function.arguments)
  300. tool_calls.append(
  301. (
  302. prompt_message.id,
  303. prompt_message.function.name,
  304. args,
  305. )
  306. )
  307. return tool_calls
  308. def extract_blocking_tool_calls(self, llm_result: LLMResult) -> list[tuple[str, str, dict[str, Any]]]:
  309. """
  310. Extract blocking tool calls from llm result
  311. Returns:
  312. List[Tuple[str, str, Dict[str, Any]]]: [(tool_call_id, tool_call_name, tool_call_args)]
  313. """
  314. tool_calls = []
  315. for prompt_message in llm_result.message.tool_calls:
  316. args = {}
  317. if prompt_message.function.arguments != "":
  318. args = json.loads(prompt_message.function.arguments)
  319. tool_calls.append(
  320. (
  321. prompt_message.id,
  322. prompt_message.function.name,
  323. args,
  324. )
  325. )
  326. return tool_calls
  327. def _init_system_message(self, prompt_template: str, prompt_messages: list[PromptMessage]) -> list[PromptMessage]:
  328. """
  329. Initialize system message
  330. """
  331. if not prompt_messages and prompt_template:
  332. return [
  333. SystemPromptMessage(content=prompt_template),
  334. ]
  335. if prompt_messages and not isinstance(prompt_messages[0], SystemPromptMessage) and prompt_template:
  336. prompt_messages.insert(0, SystemPromptMessage(content=prompt_template))
  337. return prompt_messages or []
  338. def _organize_user_query(self, query: str, prompt_messages: list[PromptMessage]) -> list[PromptMessage]:
  339. """
  340. Organize user query
  341. """
  342. if self.files:
  343. prompt_message_contents: list[PromptMessageContentUnionTypes] = []
  344. prompt_message_contents.append(TextPromptMessageContent(data=query))
  345. # get image detail config
  346. image_detail_config = (
  347. self.application_generate_entity.file_upload_config.image_config.detail
  348. if (
  349. self.application_generate_entity.file_upload_config
  350. and self.application_generate_entity.file_upload_config.image_config
  351. )
  352. else None
  353. )
  354. image_detail_config = image_detail_config or ImagePromptMessageContent.DETAIL.LOW
  355. for file in self.files:
  356. prompt_message_contents.append(
  357. file_manager.to_prompt_message_content(
  358. file,
  359. image_detail_config=image_detail_config,
  360. )
  361. )
  362. prompt_messages.append(UserPromptMessage(content=prompt_message_contents))
  363. else:
  364. prompt_messages.append(UserPromptMessage(content=query))
  365. return prompt_messages
  366. def _clear_user_prompt_image_messages(self, prompt_messages: list[PromptMessage]) -> list[PromptMessage]:
  367. """
  368. As for now, gpt supports both fc and vision at the first iteration.
  369. We need to remove the image messages from the prompt messages at the first iteration.
  370. """
  371. prompt_messages = deepcopy(prompt_messages)
  372. for prompt_message in prompt_messages:
  373. if isinstance(prompt_message, UserPromptMessage):
  374. if isinstance(prompt_message.content, list):
  375. prompt_message.content = "\n".join(
  376. [
  377. content.data
  378. if content.type == PromptMessageContentType.TEXT
  379. else "[image]"
  380. if content.type == PromptMessageContentType.IMAGE
  381. else "[file]"
  382. for content in prompt_message.content
  383. ]
  384. )
  385. return prompt_messages
  386. def _organize_prompt_messages(self):
  387. prompt_template = self.app_config.prompt_template.simple_prompt_template or ""
  388. self.history_prompt_messages = self._init_system_message(prompt_template, self.history_prompt_messages)
  389. query_prompt_messages = self._organize_user_query(self.query or "", [])
  390. self.history_prompt_messages = AgentHistoryPromptTransform(
  391. model_config=self.model_config,
  392. prompt_messages=[*query_prompt_messages, *self._current_thoughts],
  393. history_messages=self.history_prompt_messages,
  394. memory=self.memory,
  395. ).get_prompt()
  396. prompt_messages = [*self.history_prompt_messages, *query_prompt_messages, *self._current_thoughts]
  397. if len(self._current_thoughts) != 0:
  398. # clear messages after the first iteration
  399. prompt_messages = self._clear_user_prompt_image_messages(prompt_messages)
  400. return prompt_messages