Du kan inte välja fler än 25 ämnen Ämnen måste starta med en bokstav eller siffra, kan innehålla bindestreck ('-') och vara max 35 tecken långa.
Jyong ba5f8afaa8
Feat/firecrawl data source (#5232)
1 år sedan
..
.vscode build: initial support for poetry build tool (#4513) 1 år sedan
constants fixed a typo and grammar error in sampled app (#5061) 1 år sedan
controllers Feat/firecrawl data source (#5232) 1 år sedan
core Feat/firecrawl data source (#5232) 1 år sedan
docker improvement: introduce Super-Linter actions to check style for shell script, dockerfile and yaml files (#1966) 1 år sedan
events fix: initialize site with customized icon and icon_background (#5227) 1 år sedan
extensions add aws s3 iam check (#5174) 1 år sedan
fields fix: workspace member's last_active should be last_active_time, but not last_login_time (#4906) 1 år sedan
libs Feat/firecrawl data source (#5232) 1 år sedan
migrations Feat/firecrawl data source (#5232) 1 år sedan
models Feat/firecrawl data source (#5232) 1 år sedan
schedule Feat/dify rag (#2528) 1 år sedan
services Feat/firecrawl data source (#5232) 1 år sedan
tasks Feat/firecrawl data source (#5232) 1 år sedan
templates fix: email template style (#1914) 1 år sedan
tests Feat/firecrawl data source (#5232) 1 år sedan
.dockerignore build: fix .dockerignore file (#800) 2 år sedan
.env.example Feat/firecrawl data source (#5232) 1 år sedan
Dockerfile improvement: speed up dependency installation in docker image rebuilds by mounting cache layer (#3218) 1 år sedan
README.md Update README.md (#5228) 1 år sedan
app.py refactor: config file (#3852) 1 år sedan
commands.py feat: support tencent vector db (#3568) 1 år sedan
config.py feat: support tencent vector db (#3568) 1 år sedan
poetry.lock feat: support tencent vector db (#3568) 1 år sedan
poetry.toml build: initial support for poetry build tool (#4513) 1 år sedan
pyproject.toml Feat/firecrawl data source (#5232) 1 år sedan
requirements-dev.txt chore: skip explicit installing jinja2 as testing dependency (#4845) 1 år sedan
requirements.txt feat: support tencent vector db (#3568) 1 år sedan

README.md

Dify Backend API

Usage

  1. Start the docker-compose stack

The backend require some middleware, including PostgreSQL, Redis, and Weaviate, which can be started together using docker-compose.

   cd ../docker
   docker-compose -f docker-compose.middleware.yaml -p dify up -d
   cd ../api
  1. Copy .env.example to .env
  2. Generate a SECRET_KEY in the .env file.
   sed -i "/^SECRET_KEY=/c\SECRET_KEY=$(openssl rand -base64 42)" .env
  1. Create environment.

Dify API service uses Poetry to manage dependencies. You can execute poetry shell to activate the environment.

Using pip can be found below.

  1. Install dependencies
   poetry install

In case of contributors missing to update dependencies for pyproject.toml, you can perform the following shell instead.

   poetry shell                                               # activate current environment
   poetry add $(cat requirements.txt)           # install dependencies of production and update pyproject.toml
   poetry add $(cat requirements-dev.txt) --group dev    # install dependencies of development and update pyproject.toml
  1. Run migrate

Before the first launch, migrate the database to the latest version.

   poetry run python -m flask db upgrade
  1. Start backend
   poetry run python -m flask run --host 0.0.0.0 --port=5001 --debug
  1. Start Dify web service.
  2. Setup your application by visiting http://localhost:3000
  3. If you need to debug local async processing, please start the worker service.
   poetry run python -m celery -A app.celery worker -P gevent -c 1 --loglevel INFO -Q dataset,generation,mail

The started celery app handles the async tasks, e.g. dataset importing and documents indexing.

Testing

  1. Install dependencies for both the backend and the test environment
   poetry install --with dev
  1. Run the tests locally with mocked system environment variables in tool.pytest_env section in pyproject.toml
   cd ../
   poetry run -C api bash dev/pytest/pytest_all_tests.sh

Usage with pip

[!NOTE]
In the next version, we will deprecate pip as the primary package management tool for dify api service, currently Poetry and pip coexist.

  1. Start the docker-compose stack

The backend require some middleware, including PostgreSQL, Redis, and Weaviate, which can be started together using docker-compose.

   cd ../docker
   docker-compose -f docker-compose.middleware.yaml -p dify up -d
   cd ../api
  1. Copy .env.example to .env
  2. Generate a SECRET_KEY in the .env file.
   sed -i "/^SECRET_KEY=/c\SECRET_KEY=$(openssl rand -base64 42)" .env
  1. Create environment.

If you use Anaconda, create a new environment and activate it

   conda create --name dify python=3.10
   conda activate dify
  1. Install dependencies
   pip install -r requirements.txt
  1. Run migrate

Before the first launch, migrate the database to the latest version.

   flask db upgrade
  1. Start backend: bash flask run --host 0.0.0.0 --port=5001 --debug
  2. Setup your application by visiting http://localhost:5001/console/api/setup or other apis…
  3. If you need to debug local async processing, please start the worker service. bash celery -A app.celery worker -P gevent -c 1 --loglevel INFO -Q dataset,generation,mail The started celery app handles the async tasks, e.g. dataset importing and documents indexing.

Testing

  1. Install dependencies for both the backend and the test environment

    pip install -r requirements.txt -r requirements-dev.txt
    
  2. Run the tests locally with mocked system environment variables in tool.pytest_env section in pyproject.toml

    dev/pytest/pytest_all_tests.sh