Du kannst nicht mehr als 25 Themen auswählen Themen müssen mit entweder einem Buchstaben oder einer Ziffer beginnen. Sie können Bindestriche („-“) enthalten und bis zu 35 Zeichen lang sein.

document_indexing_update_task.py 2.8KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980
  1. import logging
  2. import time
  3. import click
  4. from celery import shared_task
  5. from core.indexing_runner import DocumentIsPausedError, IndexingRunner
  6. from core.rag.index_processor.index_processor_factory import IndexProcessorFactory
  7. from extensions.ext_database import db
  8. from libs.datetime_utils import naive_utc_now
  9. from models.dataset import Dataset, Document, DocumentSegment
  10. logger = logging.getLogger(__name__)
  11. @shared_task(queue="dataset")
  12. def document_indexing_update_task(dataset_id: str, document_id: str):
  13. """
  14. Async update document
  15. :param dataset_id:
  16. :param document_id:
  17. Usage: document_indexing_update_task.delay(dataset_id, document_id)
  18. """
  19. logger.info(click.style(f"Start update document: {document_id}", fg="green"))
  20. start_at = time.perf_counter()
  21. document = db.session.query(Document).where(Document.id == document_id, Document.dataset_id == dataset_id).first()
  22. if not document:
  23. logger.info(click.style(f"Document not found: {document_id}", fg="red"))
  24. db.session.close()
  25. return
  26. document.indexing_status = "parsing"
  27. document.processing_started_at = naive_utc_now()
  28. db.session.commit()
  29. # delete all document segment and index
  30. try:
  31. dataset = db.session.query(Dataset).where(Dataset.id == dataset_id).first()
  32. if not dataset:
  33. raise Exception("Dataset not found")
  34. index_type = document.doc_form
  35. index_processor = IndexProcessorFactory(index_type).init_index_processor()
  36. segments = db.session.query(DocumentSegment).where(DocumentSegment.document_id == document_id).all()
  37. if segments:
  38. index_node_ids = [segment.index_node_id for segment in segments]
  39. # delete from vector index
  40. index_processor.clean(dataset, index_node_ids, with_keywords=True, delete_child_chunks=True)
  41. for segment in segments:
  42. db.session.delete(segment)
  43. db.session.commit()
  44. end_at = time.perf_counter()
  45. logger.info(
  46. click.style(
  47. "Cleaned document when document update data source or process rule: {} latency: {}".format(
  48. document_id, end_at - start_at
  49. ),
  50. fg="green",
  51. )
  52. )
  53. except Exception:
  54. logger.exception("Cleaned document when document update data source or process rule failed")
  55. try:
  56. indexing_runner = IndexingRunner()
  57. indexing_runner.run([document])
  58. end_at = time.perf_counter()
  59. logger.info(click.style(f"update document: {document.id} latency: {end_at - start_at}", fg="green"))
  60. except DocumentIsPausedError as ex:
  61. logger.info(click.style(str(ex), fg="yellow"))
  62. except Exception:
  63. logger.exception("document_indexing_update_task failed, document_id: %s", document_id)
  64. finally:
  65. db.session.close()