Nevar pievienot vairāk kā 25 tēmas Tēmai ir jāsākas ar burtu vai ciparu, tā var saturēt domu zīmes ('-') un var būt līdz 35 simboliem gara.
Joe aa3da0e24c
fix(ops_tracing): enhance error handle in celery tasks. (#10401)
pirms 1 gada
..
.idea fix nltk averaged_perceptron_tagger download and fix score limit is none (#7582) pirms 1 gada
.vscode feat/enhance the multi-modal support (#8818) pirms 1 gada
configs feat: support LLM understand video (#9828) pirms 1 gada
constants nltk security issue and upgrade unstructured (#9558) pirms 1 gada
contexts feat/enhance the multi-modal support (#8818) pirms 1 gada
controllers Conversation delete issue (#10423) pirms 1 gada
core fix(ops_tracing): enhance error handle in celery tasks. (#10401) pirms 1 gada
docker fix: use LOG_LEVEL for celery startup (#7628) pirms 1 gada
events feat/enhance the multi-modal support (#8818) pirms 1 gada
extensions chore: use posixpath to wrapper filepath (#9976) pirms 1 gada
factories fix: iteration none output error (#10295) pirms 1 gada
fields Conversation delete issue (#10423) pirms 1 gada
libs chore(lint): Use logging.exception instead of logging.error (#10415) pirms 1 gada
migrations refactor(migration/model): update column types for workflow schema (#10160) pirms 1 gada
models feat(model): add validation for custom disclaimer length (#10287) pirms 1 gada
schedule fix: Cannot find declaration to go to CLEAN_DAY_SETTING (#10157) pirms 1 gada
services Conversation delete issue (#10423) pirms 1 gada
tasks fix(ops_tracing): enhance error handle in celery tasks. (#10401) pirms 1 gada
templates Feat/new login (#8120) pirms 1 gada
tests fix(http_request): send form data (#10431) pirms 1 gada
.dockerignore build: support Poetry for depencencies tool in api's Dockerfile (#5105) pirms 1 gada
.env.example feat: support LLM understand video (#9828) pirms 1 gada
Dockerfile chore(Dockerfile): upgrade zlib arm64 (#10244) pirms 1 gada
README.md chore(ci): bring back poetry cache to speed up CI jobs (#10347) pirms 1 gada
app.py fix: (#10437 followup) fix conditions with DEBUG config (#10438) pirms 1 gada
app_factory.py fix: (#10437 followup) fix conditions with DEBUG config (#10438) pirms 1 gada
commands.py Added OceanBase as an option for the vector store in Dify (#10010) pirms 1 gada
poetry.lock chore: lazy import sagemaker (#10342) pirms 1 gada
poetry.toml build: initial support for poetry build tool (#4513) pirms 1 gada
pyproject.toml chore(lint): Use logging.exception instead of logging.error (#10415) pirms 1 gada
pytest.ini feat: add models for gitee.ai (#9490) pirms 1 gada

README.md

Dify Backend API

Usage

[!IMPORTANT] In the v0.6.12 release, we deprecated pip as the package management tool for Dify API Backend service and replaced it with poetry.

  1. Start the docker-compose stack

The backend require some middleware, including PostgreSQL, Redis, and Weaviate, which can be started together using docker-compose.

   cd ../docker
   cp middleware.env.example middleware.env
   # change the profile to other vector database if you are not using weaviate
   docker compose -f docker-compose.middleware.yaml --profile weaviate -p dify up -d
   cd ../api
  1. Copy .env.example to .env
  2. Generate a SECRET_KEY in the .env file.
   sed -i "/^SECRET_KEY=/c\SECRET_KEY=$(openssl rand -base64 42)" .env
   secret_key=$(openssl rand -base64 42)
   sed -i '' "/^SECRET_KEY=/c\\
   SECRET_KEY=${secret_key}" .env
  1. Create environment.

Dify API service uses Poetry to manage dependencies. You can execute poetry shell to activate the environment.

  1. Install dependencies
   poetry env use 3.10
   poetry install

In case of contributors missing to update dependencies for pyproject.toml, you can perform the following shell instead.

   poetry shell                                               # activate current environment
   poetry add $(cat requirements.txt)           # install dependencies of production and update pyproject.toml
   poetry add $(cat requirements-dev.txt) --group dev    # install dependencies of development and update pyproject.toml
  1. Run migrate

Before the first launch, migrate the database to the latest version.

   poetry run python -m flask db upgrade
  1. Start backend
   poetry run python -m flask run --host 0.0.0.0 --port=5001 --debug
  1. Start Dify web service.
  2. Setup your application by visiting http://localhost:3000
  3. If you need to handle and debug the async tasks (e.g. dataset importing and documents indexing), please start the worker service.
   poetry run python -m celery -A app.celery worker -P gevent -c 1 --loglevel INFO -Q dataset,generation,mail,ops_trace,app_deletion

Testing

  1. Install dependencies for both the backend and the test environment
   poetry install -C api --with dev
  1. Run the tests locally with mocked system environment variables in tool.pytest_env section in pyproject.toml
   poetry run -C api bash dev/pytest/pytest_all_tests.sh