| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495 | 
							- 
 - from typing import Optional
 - from flask import current_app, Flask
 - from langchain.embeddings.base import Embeddings
 - from core.index.vector_index.vector_index import VectorIndex
 - from core.model_providers.model_factory import ModelFactory
 - from extensions.ext_database import db
 - from models.dataset import Dataset
 - 
 - default_retrieval_model = {
 -     'search_method': 'semantic_search',
 -     'reranking_enable': False,
 -     'reranking_model': {
 -         'reranking_provider_name': '',
 -         'reranking_model_name': ''
 -     },
 -     'top_k': 2,
 -     'score_threshold_enabled': False
 - }
 - 
 - 
 - class RetrievalService:
 - 
 -     @classmethod
 -     def embedding_search(cls, flask_app: Flask, dataset_id: str, query: str,
 -                          top_k: int, score_threshold: Optional[float], reranking_model: Optional[dict],
 -                          all_documents: list, search_method: str, embeddings: Embeddings):
 -         with flask_app.app_context():
 -             dataset = db.session.query(Dataset).filter(
 -                 Dataset.id == dataset_id
 -             ).first()
 - 
 -             vector_index = VectorIndex(
 -                 dataset=dataset,
 -                 config=current_app.config,
 -                 embeddings=embeddings
 -             )
 - 
 -             documents = vector_index.search(
 -                 query,
 -                 search_type='similarity_score_threshold',
 -                 search_kwargs={
 -                     'k': top_k,
 -                     'score_threshold': score_threshold,
 -                     'filter': {
 -                         'group_id': [dataset.id]
 -                     }
 -                 }
 -             )
 - 
 -             if documents:
 -                 if reranking_model and search_method == 'semantic_search':
 -                     rerank = ModelFactory.get_reranking_model(
 -                         tenant_id=dataset.tenant_id,
 -                         model_provider_name=reranking_model['reranking_provider_name'],
 -                         model_name=reranking_model['reranking_model_name']
 -                     )
 -                     all_documents.extend(rerank.rerank(query, documents, score_threshold, len(documents)))
 -                 else:
 -                     all_documents.extend(documents)
 - 
 -     @classmethod
 -     def full_text_index_search(cls, flask_app: Flask, dataset_id: str, query: str,
 -                                top_k: int, score_threshold: Optional[float], reranking_model: Optional[dict],
 -                                all_documents: list, search_method: str, embeddings: Embeddings):
 -         with flask_app.app_context():
 -             dataset = db.session.query(Dataset).filter(
 -                 Dataset.id == dataset_id
 -             ).first()
 - 
 -             vector_index = VectorIndex(
 -                 dataset=dataset,
 -                 config=current_app.config,
 -                 embeddings=embeddings
 -             )
 - 
 -             documents = vector_index.search_by_full_text_index(
 -                 query,
 -                 search_type='similarity_score_threshold',
 -                 top_k=top_k
 -             )
 -             if documents:
 -                 if reranking_model and search_method == 'full_text_search':
 -                     rerank = ModelFactory.get_reranking_model(
 -                         tenant_id=dataset.tenant_id,
 -                         model_provider_name=reranking_model['reranking_provider_name'],
 -                         model_name=reranking_model['reranking_model_name']
 -                     )
 -                     all_documents.extend(rerank.rerank(query, documents, score_threshold, len(documents)))
 -                 else:
 -                     all_documents.extend(documents)
 - 
 - 
 - 
 
 
  |