| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574 | 
							- import logging
 - import json
 - 
 - from typing import Optional, List, Tuple, Union
 - from datetime import datetime
 - from mimetypes import guess_extension
 - 
 - from core.app_runner.app_runner import AppRunner
 - from extensions.ext_database import db
 - 
 - from models.model import MessageAgentThought, Message, MessageFile
 - from models.tools import ToolConversationVariables
 - 
 - from core.tools.entities.tool_entities import ToolInvokeMessage, ToolInvokeMessageBinary, \
 -     ToolRuntimeVariablePool, ToolParamter
 - from core.tools.tool.tool import Tool
 - from core.tools.tool_manager import ToolManager
 - from core.tools.tool_file_manager import ToolFileManager
 - from core.tools.tool.dataset_retriever_tool import DatasetRetrieverTool
 - from core.app_runner.app_runner import AppRunner
 - from core.callback_handler.agent_tool_callback_handler import DifyAgentCallbackHandler
 - from core.callback_handler.index_tool_callback_handler import DatasetIndexToolCallbackHandler
 - from core.entities.application_entities import ModelConfigEntity, AgentEntity, AgentToolEntity
 - from core.application_queue_manager import ApplicationQueueManager
 - from core.memory.token_buffer_memory import TokenBufferMemory
 - from core.entities.application_entities import ModelConfigEntity, \
 -     AgentEntity, AppOrchestrationConfigEntity, ApplicationGenerateEntity, InvokeFrom
 - from core.model_runtime.entities.message_entities import PromptMessage, PromptMessageTool
 - from core.model_runtime.entities.llm_entities import LLMUsage
 - from core.model_runtime.utils.encoders import jsonable_encoder
 - from core.file.message_file_parser import FileTransferMethod
 - 
 - logger = logging.getLogger(__name__)
 - 
 - class BaseAssistantApplicationRunner(AppRunner):
 -     def __init__(self, tenant_id: str,
 -                  application_generate_entity: ApplicationGenerateEntity,
 -                  app_orchestration_config: AppOrchestrationConfigEntity,
 -                  model_config: ModelConfigEntity,
 -                  config: AgentEntity,
 -                  queue_manager: ApplicationQueueManager,
 -                  message: Message,
 -                  user_id: str,
 -                  memory: Optional[TokenBufferMemory] = None,
 -                  prompt_messages: Optional[List[PromptMessage]] = None,
 -                  variables_pool: Optional[ToolRuntimeVariablePool] = None,
 -                  db_variables: Optional[ToolConversationVariables] = None,
 -                  ) -> None:
 -         """
 -         Agent runner
 -         :param tenant_id: tenant id
 -         :param app_orchestration_config: app orchestration config
 -         :param model_config: model config
 -         :param config: dataset config
 -         :param queue_manager: queue manager
 -         :param message: message
 -         :param user_id: user id
 -         :param agent_llm_callback: agent llm callback
 -         :param callback: callback
 -         :param memory: memory
 -         """
 -         self.tenant_id = tenant_id
 -         self.application_generate_entity = application_generate_entity
 -         self.app_orchestration_config = app_orchestration_config
 -         self.model_config = model_config
 -         self.config = config
 -         self.queue_manager = queue_manager
 -         self.message = message
 -         self.user_id = user_id
 -         self.memory = memory
 -         self.history_prompt_messages = prompt_messages
 -         self.variables_pool = variables_pool
 -         self.db_variables_pool = db_variables
 - 
 -         # init callback
 -         self.agent_callback = DifyAgentCallbackHandler()
 -         # init dataset tools
 -         hit_callback = DatasetIndexToolCallbackHandler(
 -             queue_manager=queue_manager,
 -             app_id=self.application_generate_entity.app_id,
 -             message_id=message.id,
 -             user_id=user_id,
 -             invoke_from=self.application_generate_entity.invoke_from,
 -         )
 -         self.dataset_tools = DatasetRetrieverTool.get_dataset_tools(
 -             tenant_id=tenant_id,
 -             dataset_ids=app_orchestration_config.dataset.dataset_ids if app_orchestration_config.dataset else [],
 -             retrieve_config=app_orchestration_config.dataset.retrieve_config if app_orchestration_config.dataset else None,
 -             return_resource=app_orchestration_config.show_retrieve_source,
 -             invoke_from=application_generate_entity.invoke_from,
 -             hit_callback=hit_callback
 -         )
 -         # get how many agent thoughts have been created
 -         self.agent_thought_count = db.session.query(MessageAgentThought).filter(
 -             MessageAgentThought.message_id == self.message.id,
 -         ).count()
 - 
 -     def _repacket_app_orchestration_config(self, app_orchestration_config: AppOrchestrationConfigEntity) -> AppOrchestrationConfigEntity:
 -         """
 -         Repacket app orchestration config
 -         """
 -         if app_orchestration_config.prompt_template.simple_prompt_template is None:
 -             app_orchestration_config.prompt_template.simple_prompt_template = ''
 - 
 -         return app_orchestration_config
 - 
 -     def _convert_tool_response_to_str(self, tool_response: List[ToolInvokeMessage]) -> str:
 -         """
 -         Handle tool response
 -         """
 -         result = ''
 -         for response in tool_response:
 -             if response.type == ToolInvokeMessage.MessageType.TEXT:
 -                 result += response.message
 -             elif response.type == ToolInvokeMessage.MessageType.LINK:
 -                 result += f"result link: {response.message}. please dirct user to check it."
 -             elif response.type == ToolInvokeMessage.MessageType.IMAGE_LINK or \
 -                  response.type == ToolInvokeMessage.MessageType.IMAGE:
 -                 result += f"image has been created and sent to user already, you should tell user to check it now."
 -             else:
 -                 result += f"tool response: {response.message}."
 - 
 -         return result
 -     
 -     def _convert_tool_to_prompt_message_tool(self, tool: AgentToolEntity) -> Tuple[PromptMessageTool, Tool]:
 -         """
 -             convert tool to prompt message tool
 -         """
 -         tool_entity = ToolManager.get_tool_runtime(
 -             provider_type=tool.provider_type, provider_name=tool.provider_id, tool_name=tool.tool_name, 
 -             tanent_id=self.application_generate_entity.tenant_id,
 -             agent_callback=self.agent_callback
 -         )
 -         tool_entity.load_variables(self.variables_pool)
 - 
 -         message_tool = PromptMessageTool(
 -             name=tool.tool_name,
 -             description=tool_entity.description.llm,
 -             parameters={
 -                 "type": "object",
 -                 "properties": {},
 -                 "required": [],
 -             }
 -         )
 - 
 -         runtime_parameters = {}
 - 
 -         parameters = tool_entity.parameters or []
 -         user_parameters = tool_entity.get_runtime_parameters() or []
 - 
 -         # override parameters
 -         for parameter in user_parameters:
 -             # check if parameter in tool parameters
 -             found = False
 -             for tool_parameter in parameters:
 -                 if tool_parameter.name == parameter.name:
 -                     found = True
 -                     break
 - 
 -             if found:
 -                 # override parameter
 -                 tool_parameter.type = parameter.type
 -                 tool_parameter.form = parameter.form
 -                 tool_parameter.required = parameter.required
 -                 tool_parameter.default = parameter.default
 -                 tool_parameter.options = parameter.options
 -                 tool_parameter.llm_description = parameter.llm_description
 -             else:
 -                 # add new parameter
 -                 parameters.append(parameter)
 - 
 -         for parameter in parameters:
 -             parameter_type = 'string'
 -             enum = []
 -             if parameter.type == ToolParamter.ToolParameterType.STRING:
 -                 parameter_type = 'string'
 -             elif parameter.type == ToolParamter.ToolParameterType.BOOLEAN:
 -                 parameter_type = 'boolean'
 -             elif parameter.type == ToolParamter.ToolParameterType.NUMBER:
 -                 parameter_type = 'number'
 -             elif parameter.type == ToolParamter.ToolParameterType.SELECT:
 -                 for option in parameter.options:
 -                     enum.append(option.value)
 -                 parameter_type = 'string'
 -             else:
 -                 raise ValueError(f"parameter type {parameter.type} is not supported")
 -             
 -             if parameter.form == ToolParamter.ToolParameterForm.FORM:
 -                 # get tool parameter from form
 -                 tool_parameter_config = tool.tool_parameters.get(parameter.name)
 -                 if not tool_parameter_config:
 -                     # get default value
 -                     tool_parameter_config = parameter.default
 -                     if not tool_parameter_config and parameter.required:
 -                         raise ValueError(f"tool parameter {parameter.name} not found in tool config")
 -                     
 -                 if parameter.type == ToolParamter.ToolParameterType.SELECT:
 -                     # check if tool_parameter_config in options
 -                     options = list(map(lambda x: x.value, parameter.options))
 -                     if tool_parameter_config not in options:
 -                         raise ValueError(f"tool parameter {parameter.name} value {tool_parameter_config} not in options {options}")
 -                     
 -                 # convert tool parameter config to correct type
 -                 try:
 -                     if parameter.type == ToolParamter.ToolParameterType.NUMBER:
 -                         # check if tool parameter is integer
 -                         if isinstance(tool_parameter_config, int):
 -                             tool_parameter_config = tool_parameter_config
 -                         elif isinstance(tool_parameter_config, float):
 -                             tool_parameter_config = tool_parameter_config
 -                         elif isinstance(tool_parameter_config, str):
 -                             if '.' in tool_parameter_config:
 -                                 tool_parameter_config = float(tool_parameter_config)
 -                             else:
 -                                 tool_parameter_config = int(tool_parameter_config)
 -                     elif parameter.type == ToolParamter.ToolParameterType.BOOLEAN:
 -                         tool_parameter_config = bool(tool_parameter_config)
 -                     elif parameter.type not in [ToolParamter.ToolParameterType.SELECT, ToolParamter.ToolParameterType.STRING]:
 -                         tool_parameter_config = str(tool_parameter_config)
 -                     elif parameter.type == ToolParamter.ToolParameterType:
 -                         tool_parameter_config = str(tool_parameter_config)
 -                 except Exception as e:
 -                     raise ValueError(f"tool parameter {parameter.name} value {tool_parameter_config} is not correct type")
 -                 
 -                 # save tool parameter to tool entity memory
 -                 runtime_parameters[parameter.name] = tool_parameter_config
 -             
 -             elif parameter.form == ToolParamter.ToolParameterForm.LLM:
 -                 message_tool.parameters['properties'][parameter.name] = {
 -                     "type": parameter_type,
 -                     "description": parameter.llm_description or '',
 -                 }
 - 
 -                 if len(enum) > 0:
 -                     message_tool.parameters['properties'][parameter.name]['enum'] = enum
 - 
 -                 if parameter.required:
 -                     message_tool.parameters['required'].append(parameter.name)
 - 
 -         tool_entity.runtime.runtime_parameters.update(runtime_parameters)
 - 
 -         return message_tool, tool_entity
 -     
 -     def _convert_dataset_retriever_tool_to_prompt_message_tool(self, tool: DatasetRetrieverTool) -> PromptMessageTool:
 -         """
 -         convert dataset retriever tool to prompt message tool
 -         """
 -         prompt_tool = PromptMessageTool(
 -             name=tool.identity.name,
 -             description=tool.description.llm,
 -             parameters={
 -                 "type": "object",
 -                 "properties": {},
 -                 "required": [],
 -             }
 -         )
 - 
 -         for parameter in tool.get_runtime_parameters():
 -             parameter_type = 'string'
 -         
 -             prompt_tool.parameters['properties'][parameter.name] = {
 -                 "type": parameter_type,
 -                 "description": parameter.llm_description or '',
 -             }
 - 
 -             if parameter.required:
 -                 if parameter.name not in prompt_tool.parameters['required']:
 -                     prompt_tool.parameters['required'].append(parameter.name)
 - 
 -         return prompt_tool
 -     
 -     def update_prompt_message_tool(self, tool: Tool, prompt_tool: PromptMessageTool) -> PromptMessageTool:
 -         """
 -         update prompt message tool
 -         """
 -         # try to get tool runtime parameters
 -         tool_runtime_parameters = tool.get_runtime_parameters() or []
 - 
 -         for parameter in tool_runtime_parameters:
 -             parameter_type = 'string'
 -             enum = []
 -             if parameter.type == ToolParamter.ToolParameterType.STRING:
 -                 parameter_type = 'string'
 -             elif parameter.type == ToolParamter.ToolParameterType.BOOLEAN:
 -                 parameter_type = 'boolean'
 -             elif parameter.type == ToolParamter.ToolParameterType.NUMBER:
 -                 parameter_type = 'number'
 -             elif parameter.type == ToolParamter.ToolParameterType.SELECT:
 -                 for option in parameter.options:
 -                     enum.append(option.value)
 -                 parameter_type = 'string'
 -             else:
 -                 raise ValueError(f"parameter type {parameter.type} is not supported")
 -         
 -             if parameter.form == ToolParamter.ToolParameterForm.LLM:
 -                 prompt_tool.parameters['properties'][parameter.name] = {
 -                     "type": parameter_type,
 -                     "description": parameter.llm_description or '',
 -                 }
 - 
 -                 if len(enum) > 0:
 -                     prompt_tool.parameters['properties'][parameter.name]['enum'] = enum
 - 
 -                 if parameter.required:
 -                     if parameter.name not in prompt_tool.parameters['required']:
 -                         prompt_tool.parameters['required'].append(parameter.name)
 - 
 -         return prompt_tool
 -     
 -     def extract_tool_response_binary(self, tool_response: List[ToolInvokeMessage]) -> List[ToolInvokeMessageBinary]:
 -         """
 -         Extract tool response binary
 -         """
 -         result = []
 - 
 -         for response in tool_response:
 -             if response.type == ToolInvokeMessage.MessageType.IMAGE_LINK or \
 -                 response.type == ToolInvokeMessage.MessageType.IMAGE:
 -                 result.append(ToolInvokeMessageBinary(
 -                     mimetype=response.meta.get('mime_type', 'octet/stream'),
 -                     url=response.message,
 -                     save_as=response.save_as,
 -                 ))
 -             elif response.type == ToolInvokeMessage.MessageType.BLOB:
 -                 result.append(ToolInvokeMessageBinary(
 -                     mimetype=response.meta.get('mime_type', 'octet/stream'),
 -                     url=response.message,
 -                     save_as=response.save_as,
 -                 ))
 -             elif response.type == ToolInvokeMessage.MessageType.LINK:
 -                 # check if there is a mime type in meta
 -                 if response.meta and 'mime_type' in response.meta:
 -                     result.append(ToolInvokeMessageBinary(
 -                         mimetype=response.meta.get('mime_type', 'octet/stream') if response.meta else 'octet/stream',
 -                         url=response.message,
 -                         save_as=response.save_as,
 -                     ))
 - 
 -         return result
 -     
 -     def create_message_files(self, messages: List[ToolInvokeMessageBinary]) -> List[Tuple[MessageFile, bool]]:
 -         """
 -         Create message file
 - 
 -         :param messages: messages
 -         :return: message files, should save as variable
 -         """
 -         result = []
 - 
 -         for message in messages:
 -             file_type = 'bin'
 -             if 'image' in message.mimetype:
 -                 file_type = 'image'
 -             elif 'video' in message.mimetype:
 -                 file_type = 'video'
 -             elif 'audio' in message.mimetype:
 -                 file_type = 'audio'
 -             elif 'text' in message.mimetype:
 -                 file_type = 'text'
 -             elif 'pdf' in message.mimetype:
 -                 file_type = 'pdf'
 -             elif 'zip' in message.mimetype:
 -                 file_type = 'archive'
 -             # ...
 - 
 -             invoke_from = self.application_generate_entity.invoke_from
 - 
 -             message_file = MessageFile(
 -                 message_id=self.message.id,
 -                 type=file_type,
 -                 transfer_method=FileTransferMethod.TOOL_FILE.value,
 -                 belongs_to='assistant',
 -                 url=message.url,
 -                 upload_file_id=None,
 -                 created_by_role=('account'if invoke_from in [InvokeFrom.EXPLORE, InvokeFrom.DEBUGGER] else 'end_user'),
 -                 created_by=self.user_id,
 -             )
 -             db.session.add(message_file)
 -             result.append((
 -                 message_file,
 -                 message.save_as
 -             ))
 -             
 -         db.session.commit()
 - 
 -         return result
 -         
 -     def create_agent_thought(self, message_id: str, message: str, 
 -                              tool_name: str, tool_input: str, messages_ids: List[str]
 -                              ) -> MessageAgentThought:
 -         """
 -         Create agent thought
 -         """
 -         thought = MessageAgentThought(
 -             message_id=message_id,
 -             message_chain_id=None,
 -             thought='',
 -             tool=tool_name,
 -             tool_labels_str='{}',
 -             tool_input=tool_input,
 -             message=message,
 -             message_token=0,
 -             message_unit_price=0,
 -             message_price_unit=0,
 -             message_files=json.dumps(messages_ids) if messages_ids else '',
 -             answer='',
 -             observation='',
 -             answer_token=0,
 -             answer_unit_price=0,
 -             answer_price_unit=0,
 -             tokens=0,
 -             total_price=0,
 -             position=self.agent_thought_count + 1,
 -             currency='USD',
 -             latency=0,
 -             created_by_role='account',
 -             created_by=self.user_id,
 -         )
 - 
 -         db.session.add(thought)
 -         db.session.commit()
 - 
 -         self.agent_thought_count += 1
 - 
 -         return thought
 - 
 -     def save_agent_thought(self, 
 -                            agent_thought: MessageAgentThought, 
 -                            tool_name: str,
 -                            tool_input: Union[str, dict],
 -                            thought: str, 
 -                            observation: str, 
 -                            answer: str,
 -                            messages_ids: List[str],
 -                            llm_usage: LLMUsage = None) -> MessageAgentThought:
 -         """
 -         Save agent thought
 -         """
 -         if thought is not None:
 -             agent_thought.thought = thought
 - 
 -         if tool_name is not None:
 -             agent_thought.tool = tool_name
 - 
 -         if tool_input is not None:
 -             if isinstance(tool_input, dict):
 -                 try:
 -                     tool_input = json.dumps(tool_input, ensure_ascii=False)
 -                 except Exception as e:
 -                     tool_input = json.dumps(tool_input)
 - 
 -             agent_thought.tool_input = tool_input
 - 
 -         if observation is not None:
 -             agent_thought.observation = observation
 - 
 -         if answer is not None:
 -             agent_thought.answer = answer
 - 
 -         if messages_ids is not None and len(messages_ids) > 0:
 -             agent_thought.message_files = json.dumps(messages_ids)
 -         
 -         if llm_usage:
 -             agent_thought.message_token = llm_usage.prompt_tokens
 -             agent_thought.message_price_unit = llm_usage.prompt_price_unit
 -             agent_thought.message_unit_price = llm_usage.prompt_unit_price
 -             agent_thought.answer_token = llm_usage.completion_tokens
 -             agent_thought.answer_price_unit = llm_usage.completion_price_unit
 -             agent_thought.answer_unit_price = llm_usage.completion_unit_price
 -             agent_thought.tokens = llm_usage.total_tokens
 -             agent_thought.total_price = llm_usage.total_price
 - 
 -         # check if tool labels is not empty
 -         labels = agent_thought.tool_labels or {}
 -         tools = agent_thought.tool.split(';') if agent_thought.tool else []
 -         for tool in tools:
 -             if not tool:
 -                 continue
 -             if tool not in labels:
 -                 tool_label = ToolManager.get_tool_label(tool)
 -                 if tool_label:
 -                     labels[tool] = tool_label.to_dict()
 -                 else:
 -                     labels[tool] = {'en_US': tool, 'zh_Hans': tool}
 - 
 -         agent_thought.tool_labels_str = json.dumps(labels)
 - 
 -         db.session.commit()
 - 
 -     def get_history_prompt_messages(self) -> List[PromptMessage]:
 -         """
 -         Get history prompt messages
 -         """
 -         if self.history_prompt_messages is None:
 -             self.history_prompt_messages = db.session.query(PromptMessage).filter(
 -                 PromptMessage.message_id == self.message.id,
 -             ).order_by(PromptMessage.position.asc()).all()
 - 
 -         return self.history_prompt_messages
 -     
 -     def transform_tool_invoke_messages(self, messages: List[ToolInvokeMessage]) -> List[ToolInvokeMessage]:
 -         """
 -         Transform tool message into agent thought
 -         """
 -         result = []
 - 
 -         for message in messages:
 -             if message.type == ToolInvokeMessage.MessageType.TEXT:
 -                 result.append(message)
 -             elif message.type == ToolInvokeMessage.MessageType.LINK:
 -                 result.append(message)
 -             elif message.type == ToolInvokeMessage.MessageType.IMAGE:
 -                 # try to download image
 -                 try:
 -                     file = ToolFileManager.create_file_by_url(user_id=self.user_id, tenant_id=self.tenant_id,
 -                                                                conversation_id=self.message.conversation_id,
 -                                                                file_url=message.message)
 -                     
 -                     url = f'/files/tools/{file.id}{guess_extension(file.mimetype) or ".png"}'
 - 
 -                     result.append(ToolInvokeMessage(
 -                         type=ToolInvokeMessage.MessageType.IMAGE_LINK,
 -                         message=url,
 -                         save_as=message.save_as,
 -                         meta=message.meta.copy() if message.meta is not None else {},
 -                     ))
 -                 except Exception as e:
 -                     logger.exception(e)
 -                     result.append(ToolInvokeMessage(
 -                         type=ToolInvokeMessage.MessageType.TEXT,
 -                         message=f"Failed to download image: {message.message}, you can try to download it yourself.",
 -                         meta=message.meta.copy() if message.meta is not None else {},
 -                         save_as=message.save_as,
 -                     ))
 -             elif message.type == ToolInvokeMessage.MessageType.BLOB:
 -                 # get mime type and save blob to storage
 -                 mimetype = message.meta.get('mime_type', 'octet/stream')
 -                 # if message is str, encode it to bytes
 -                 if isinstance(message.message, str):
 -                     message.message = message.message.encode('utf-8')
 -                 file = ToolFileManager.create_file_by_raw(user_id=self.user_id, tenant_id=self.tenant_id,
 -                                                             conversation_id=self.message.conversation_id,
 -                                                             file_binary=message.message,
 -                                                             mimetype=mimetype)
 -                                                             
 -                 url = f'/files/tools/{file.id}{guess_extension(file.mimetype) or ".bin"}'
 - 
 -                 # check if file is image
 -                 if 'image' in mimetype:
 -                     result.append(ToolInvokeMessage(
 -                         type=ToolInvokeMessage.MessageType.IMAGE_LINK,
 -                         message=url,
 -                         save_as=message.save_as,
 -                         meta=message.meta.copy() if message.meta is not None else {},
 -                     ))
 -                 else:
 -                     result.append(ToolInvokeMessage(
 -                         type=ToolInvokeMessage.MessageType.LINK,
 -                         message=url,
 -                         save_as=message.save_as,
 -                         meta=message.meta.copy() if message.meta is not None else {},
 -                     ))
 -             else:
 -                 result.append(message)
 - 
 -         return result
 -     
 -     def update_db_variables(self, tool_variables: ToolRuntimeVariablePool, db_variables: ToolConversationVariables):
 -         """
 -         convert tool variables to db variables
 -         """
 -         db_variables.updated_at = datetime.utcnow()
 -         db_variables.variables_str = json.dumps(jsonable_encoder(tool_variables.pool))
 -         db.session.commit()
 
 
  |