| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008 | 
							- import json
 - import time
 - import uuid
 - from collections.abc import Callable, Generator, Mapping, Sequence
 - from typing import Any, Optional, cast
 - from uuid import uuid4
 - 
 - from sqlalchemy import exists, select
 - from sqlalchemy.orm import Session, sessionmaker
 - 
 - from core.app.app_config.entities import VariableEntityType
 - from core.app.apps.advanced_chat.app_config_manager import AdvancedChatAppConfigManager
 - from core.app.apps.workflow.app_config_manager import WorkflowAppConfigManager
 - from core.file import File
 - from core.repositories import DifyCoreRepositoryFactory
 - from core.variables import Variable
 - from core.variables.variables import VariableUnion
 - from core.workflow.entities.node_entities import NodeRunResult
 - from core.workflow.entities.variable_pool import VariablePool
 - from core.workflow.entities.workflow_node_execution import WorkflowNodeExecution, WorkflowNodeExecutionStatus
 - from core.workflow.errors import WorkflowNodeRunFailedError
 - from core.workflow.graph_engine.entities.event import InNodeEvent
 - from core.workflow.nodes import NodeType
 - from core.workflow.nodes.base.node import BaseNode
 - from core.workflow.nodes.enums import ErrorStrategy
 - from core.workflow.nodes.event import RunCompletedEvent
 - from core.workflow.nodes.event.types import NodeEvent
 - from core.workflow.nodes.node_mapping import LATEST_VERSION, NODE_TYPE_CLASSES_MAPPING
 - from core.workflow.nodes.start.entities import StartNodeData
 - from core.workflow.system_variable import SystemVariable
 - from core.workflow.workflow_entry import WorkflowEntry
 - from events.app_event import app_draft_workflow_was_synced, app_published_workflow_was_updated
 - from extensions.ext_database import db
 - from factories.file_factory import build_from_mapping, build_from_mappings
 - from libs.datetime_utils import naive_utc_now
 - from models.account import Account
 - from models.model import App, AppMode
 - from models.tools import WorkflowToolProvider
 - from models.workflow import Workflow, WorkflowNodeExecutionModel, WorkflowNodeExecutionTriggeredFrom, WorkflowType
 - from repositories.factory import DifyAPIRepositoryFactory
 - from services.enterprise.plugin_manager_service import PluginCredentialType
 - from services.errors.app import IsDraftWorkflowError, WorkflowHashNotEqualError
 - from services.workflow.workflow_converter import WorkflowConverter
 - 
 - from .errors.workflow_service import DraftWorkflowDeletionError, WorkflowInUseError
 - from .workflow_draft_variable_service import DraftVariableSaver, DraftVarLoader, WorkflowDraftVariableService
 - 
 - 
 - class WorkflowService:
 -     """
 -     Workflow Service
 -     """
 - 
 -     def __init__(self, session_maker: sessionmaker | None = None):
 -         """Initialize WorkflowService with repository dependencies."""
 -         if session_maker is None:
 -             session_maker = sessionmaker(bind=db.engine, expire_on_commit=False)
 -         self._node_execution_service_repo = DifyAPIRepositoryFactory.create_api_workflow_node_execution_repository(
 -             session_maker
 -         )
 - 
 -     def get_node_last_run(self, app_model: App, workflow: Workflow, node_id: str) -> WorkflowNodeExecutionModel | None:
 -         """
 -         Get the most recent execution for a specific node.
 - 
 -         Args:
 -             app_model: The application model
 -             workflow: The workflow model
 -             node_id: The node identifier
 - 
 -         Returns:
 -             The most recent WorkflowNodeExecutionModel for the node, or None if not found
 -         """
 -         return self._node_execution_service_repo.get_node_last_execution(
 -             tenant_id=app_model.tenant_id,
 -             app_id=app_model.id,
 -             workflow_id=workflow.id,
 -             node_id=node_id,
 -         )
 - 
 -     def is_workflow_exist(self, app_model: App) -> bool:
 -         stmt = select(
 -             exists().where(
 -                 Workflow.tenant_id == app_model.tenant_id,
 -                 Workflow.app_id == app_model.id,
 -                 Workflow.version == Workflow.VERSION_DRAFT,
 -             )
 -         )
 -         return db.session.execute(stmt).scalar_one()
 - 
 -     def get_draft_workflow(self, app_model: App, workflow_id: Optional[str] = None) -> Optional[Workflow]:
 -         """
 -         Get draft workflow
 -         """
 -         if workflow_id:
 -             return self.get_published_workflow_by_id(app_model, workflow_id)
 -         # fetch draft workflow by app_model
 -         workflow = (
 -             db.session.query(Workflow)
 -             .where(
 -                 Workflow.tenant_id == app_model.tenant_id,
 -                 Workflow.app_id == app_model.id,
 -                 Workflow.version == Workflow.VERSION_DRAFT,
 -             )
 -             .first()
 -         )
 - 
 -         # return draft workflow
 -         return workflow
 - 
 -     def get_published_workflow_by_id(self, app_model: App, workflow_id: str) -> Optional[Workflow]:
 -         """
 -         fetch published workflow by workflow_id
 -         """
 -         workflow = (
 -             db.session.query(Workflow)
 -             .where(
 -                 Workflow.tenant_id == app_model.tenant_id,
 -                 Workflow.app_id == app_model.id,
 -                 Workflow.id == workflow_id,
 -             )
 -             .first()
 -         )
 -         if not workflow:
 -             return None
 -         if workflow.version == Workflow.VERSION_DRAFT:
 -             raise IsDraftWorkflowError(
 -                 f"Cannot use draft workflow version. Workflow ID: {workflow_id}. "
 -                 f"Please use a published workflow version or leave workflow_id empty."
 -             )
 -         return workflow
 - 
 -     def get_published_workflow(self, app_model: App) -> Optional[Workflow]:
 -         """
 -         Get published workflow
 -         """
 - 
 -         if not app_model.workflow_id:
 -             return None
 - 
 -         # fetch published workflow by workflow_id
 -         workflow = (
 -             db.session.query(Workflow)
 -             .where(
 -                 Workflow.tenant_id == app_model.tenant_id,
 -                 Workflow.app_id == app_model.id,
 -                 Workflow.id == app_model.workflow_id,
 -             )
 -             .first()
 -         )
 - 
 -         return workflow
 - 
 -     def get_all_published_workflow(
 -         self,
 -         *,
 -         session: Session,
 -         app_model: App,
 -         page: int,
 -         limit: int,
 -         user_id: str | None,
 -         named_only: bool = False,
 -     ) -> tuple[Sequence[Workflow], bool]:
 -         """
 -         Get published workflow with pagination
 -         """
 -         if not app_model.workflow_id:
 -             return [], False
 - 
 -         stmt = (
 -             select(Workflow)
 -             .where(Workflow.app_id == app_model.id)
 -             .order_by(Workflow.version.desc())
 -             .limit(limit + 1)
 -             .offset((page - 1) * limit)
 -         )
 - 
 -         if user_id:
 -             stmt = stmt.where(Workflow.created_by == user_id)
 - 
 -         if named_only:
 -             stmt = stmt.where(Workflow.marked_name != "")
 - 
 -         workflows = session.scalars(stmt).all()
 - 
 -         has_more = len(workflows) > limit
 -         if has_more:
 -             workflows = workflows[:-1]
 - 
 -         return workflows, has_more
 - 
 -     def sync_draft_workflow(
 -         self,
 -         *,
 -         app_model: App,
 -         graph: dict,
 -         features: dict,
 -         unique_hash: Optional[str],
 -         account: Account,
 -         environment_variables: Sequence[Variable],
 -         conversation_variables: Sequence[Variable],
 -     ) -> Workflow:
 -         """
 -         Sync draft workflow
 -         :raises WorkflowHashNotEqualError
 -         """
 -         # fetch draft workflow by app_model
 -         workflow = self.get_draft_workflow(app_model=app_model)
 - 
 -         if workflow and workflow.unique_hash != unique_hash:
 -             raise WorkflowHashNotEqualError()
 - 
 -         # validate features structure
 -         self.validate_features_structure(app_model=app_model, features=features)
 - 
 -         # create draft workflow if not found
 -         if not workflow:
 -             workflow = Workflow(
 -                 tenant_id=app_model.tenant_id,
 -                 app_id=app_model.id,
 -                 type=WorkflowType.from_app_mode(app_model.mode).value,
 -                 version=Workflow.VERSION_DRAFT,
 -                 graph=json.dumps(graph),
 -                 features=json.dumps(features),
 -                 created_by=account.id,
 -                 environment_variables=environment_variables,
 -                 conversation_variables=conversation_variables,
 -             )
 -             db.session.add(workflow)
 -         # update draft workflow if found
 -         else:
 -             workflow.graph = json.dumps(graph)
 -             workflow.features = json.dumps(features)
 -             workflow.updated_by = account.id
 -             workflow.updated_at = naive_utc_now()
 -             workflow.environment_variables = environment_variables
 -             workflow.conversation_variables = conversation_variables
 - 
 -         # commit db session changes
 -         db.session.commit()
 - 
 -         # trigger app workflow events
 -         app_draft_workflow_was_synced.send(app_model, synced_draft_workflow=workflow)
 - 
 -         # return draft workflow
 -         return workflow
 - 
 -     def publish_workflow(
 -         self,
 -         *,
 -         session: Session,
 -         app_model: App,
 -         account: Account,
 -         marked_name: str = "",
 -         marked_comment: str = "",
 -     ) -> Workflow:
 -         draft_workflow_stmt = select(Workflow).where(
 -             Workflow.tenant_id == app_model.tenant_id,
 -             Workflow.app_id == app_model.id,
 -             Workflow.version == Workflow.VERSION_DRAFT,
 -         )
 -         draft_workflow = session.scalar(draft_workflow_stmt)
 -         if not draft_workflow:
 -             raise ValueError("No valid workflow found.")
 - 
 -         # Validate credentials before publishing, for credential policy check
 -         from services.feature_service import FeatureService
 - 
 -         if FeatureService.get_system_features().plugin_manager.enabled:
 -             self._validate_workflow_credentials(draft_workflow)
 - 
 -         # create new workflow
 -         workflow = Workflow.new(
 -             tenant_id=app_model.tenant_id,
 -             app_id=app_model.id,
 -             type=draft_workflow.type,
 -             version=Workflow.version_from_datetime(naive_utc_now()),
 -             graph=draft_workflow.graph,
 -             features=draft_workflow.features,
 -             created_by=account.id,
 -             environment_variables=draft_workflow.environment_variables,
 -             conversation_variables=draft_workflow.conversation_variables,
 -             marked_name=marked_name,
 -             marked_comment=marked_comment,
 -         )
 - 
 -         # commit db session changes
 -         session.add(workflow)
 - 
 -         # trigger app workflow events
 -         app_published_workflow_was_updated.send(app_model, published_workflow=workflow)
 - 
 -         # return new workflow
 -         return workflow
 - 
 -     def _validate_workflow_credentials(self, workflow: Workflow) -> None:
 -         """
 -         Validate all credentials in workflow nodes before publishing.
 - 
 -         :param workflow: The workflow to validate
 -         :raises ValueError: If any credentials violate policy compliance
 -         """
 -         graph_dict = workflow.graph_dict
 -         nodes = graph_dict.get("nodes", [])
 - 
 -         for node in nodes:
 -             node_data = node.get("data", {})
 -             node_type = node_data.get("type")
 -             node_id = node.get("id", "unknown")
 - 
 -             try:
 -                 # Extract and validate credentials based on node type
 -                 if node_type == "tool":
 -                     credential_id = node_data.get("credential_id")
 -                     provider = node_data.get("provider_id")
 -                     if provider:
 -                         if credential_id:
 -                             # Check specific credential
 -                             from core.helper.credential_utils import check_credential_policy_compliance
 - 
 -                             check_credential_policy_compliance(
 -                                 credential_id=credential_id,
 -                                 provider=provider,
 -                                 credential_type=PluginCredentialType.TOOL,
 -                             )
 -                         else:
 -                             # Check default workspace credential for this provider
 -                             self._check_default_tool_credential(workflow.tenant_id, provider)
 - 
 -                 elif node_type == "agent":
 -                     agent_params = node_data.get("agent_parameters", {})
 - 
 -                     model_config = agent_params.get("model", {}).get("value", {})
 -                     if model_config.get("provider") and model_config.get("model"):
 -                         self._validate_llm_model_config(
 -                             workflow.tenant_id, model_config["provider"], model_config["model"]
 -                         )
 - 
 -                         # Validate load balancing credentials for agent model if load balancing is enabled
 -                         agent_model_node_data = {"model": model_config}
 -                         self._validate_load_balancing_credentials(workflow, agent_model_node_data, node_id)
 - 
 -                     # Validate agent tools
 -                     tools = agent_params.get("tools", {}).get("value", [])
 -                     for tool in tools:
 -                         # Agent tools store provider in provider_name field
 -                         provider = tool.get("provider_name")
 -                         credential_id = tool.get("credential_id")
 -                         if provider:
 -                             if credential_id:
 -                                 from core.helper.credential_utils import check_credential_policy_compliance
 - 
 -                                 check_credential_policy_compliance(credential_id, provider, PluginCredentialType.TOOL)
 -                             else:
 -                                 self._check_default_tool_credential(workflow.tenant_id, provider)
 - 
 -                 elif node_type in ["llm", "knowledge_retrieval", "parameter_extractor", "question_classifier"]:
 -                     model_config = node_data.get("model", {})
 -                     provider = model_config.get("provider")
 -                     model_name = model_config.get("name")
 - 
 -                     if provider and model_name:
 -                         # Validate that the provider+model combination can fetch valid credentials
 -                         self._validate_llm_model_config(workflow.tenant_id, provider, model_name)
 -                         # Validate load balancing credentials if load balancing is enabled
 -                         self._validate_load_balancing_credentials(workflow, node_data, node_id)
 -                     else:
 -                         raise ValueError(f"Node {node_id} ({node_type}): Missing provider or model configuration")
 - 
 -             except Exception as e:
 -                 if isinstance(e, ValueError):
 -                     raise e
 -                 else:
 -                     raise ValueError(f"Node {node_id} ({node_type}): {str(e)}")
 - 
 -     def _validate_llm_model_config(self, tenant_id: str, provider: str, model_name: str) -> None:
 -         """
 -         Validate that an LLM model configuration can fetch valid credentials.
 - 
 -         This method attempts to get the model instance and validates that:
 -         1. The provider exists and is configured
 -         2. The model exists in the provider
 -         3. Credentials can be fetched for the model
 -         4. The credentials pass policy compliance checks
 - 
 -         :param tenant_id: The tenant ID
 -         :param provider: The provider name
 -         :param model_name: The model name
 -         :raises ValueError: If the model configuration is invalid or credentials fail policy checks
 -         """
 -         try:
 -             from core.model_manager import ModelManager
 -             from core.model_runtime.entities.model_entities import ModelType
 - 
 -             # Get model instance to validate provider+model combination
 -             model_manager = ModelManager()
 -             model_manager.get_model_instance(
 -                 tenant_id=tenant_id, provider=provider, model_type=ModelType.LLM, model=model_name
 -             )
 - 
 -             # The ModelInstance constructor will automatically check credential policy compliance
 -             # via ProviderConfiguration.get_current_credentials() -> _check_credential_policy_compliance()
 -             # If it fails, an exception will be raised
 - 
 -         except Exception as e:
 -             raise ValueError(
 -                 f"Failed to validate LLM model configuration (provider: {provider}, model: {model_name}): {str(e)}"
 -             )
 - 
 -     def _check_default_tool_credential(self, tenant_id: str, provider: str) -> None:
 -         """
 -         Check credential policy compliance for the default workspace credential of a tool provider.
 - 
 -         This method finds the default credential for the given provider and validates it.
 -         Uses the same fallback logic as runtime to handle deauthorized credentials.
 - 
 -         :param tenant_id: The tenant ID
 -         :param provider: The tool provider name
 -         :raises ValueError: If no default credential exists or if it fails policy compliance
 -         """
 -         try:
 -             from models.tools import BuiltinToolProvider
 - 
 -             # Use the same fallback logic as runtime: get the first available credential
 -             # ordered by is_default DESC, created_at ASC (same as tool_manager.py)
 -             default_provider = (
 -                 db.session.query(BuiltinToolProvider)
 -                 .where(
 -                     BuiltinToolProvider.tenant_id == tenant_id,
 -                     BuiltinToolProvider.provider == provider,
 -                 )
 -                 .order_by(BuiltinToolProvider.is_default.desc(), BuiltinToolProvider.created_at.asc())
 -                 .first()
 -             )
 - 
 -             if not default_provider:
 -                 raise ValueError("No default credential found")
 - 
 -             # Check credential policy compliance using the default credential ID
 -             from core.helper.credential_utils import check_credential_policy_compliance
 - 
 -             check_credential_policy_compliance(
 -                 credential_id=default_provider.id,
 -                 provider=provider,
 -                 credential_type=PluginCredentialType.TOOL,
 -                 check_existence=False,
 -             )
 - 
 -         except Exception as e:
 -             raise ValueError(f"Failed to validate default credential for tool provider {provider}: {str(e)}")
 - 
 -     def _validate_load_balancing_credentials(self, workflow: Workflow, node_data: dict, node_id: str) -> None:
 -         """
 -         Validate load balancing credentials for a workflow node.
 - 
 -         :param workflow: The workflow being validated
 -         :param node_data: The node data containing model configuration
 -         :param node_id: The node ID for error reporting
 -         :raises ValueError: If load balancing credentials violate policy compliance
 -         """
 -         # Extract model configuration
 -         model_config = node_data.get("model", {})
 -         provider = model_config.get("provider")
 -         model_name = model_config.get("name")
 - 
 -         if not provider or not model_name:
 -             return  # No model config to validate
 - 
 -         # Check if this model has load balancing enabled
 -         if self._is_load_balancing_enabled(workflow.tenant_id, provider, model_name):
 -             # Get all load balancing configurations for this model
 -             load_balancing_configs = self._get_load_balancing_configs(workflow.tenant_id, provider, model_name)
 -             # Validate each load balancing configuration
 -             try:
 -                 for config in load_balancing_configs:
 -                     if config.get("credential_id"):
 -                         from core.helper.credential_utils import check_credential_policy_compliance
 - 
 -                         check_credential_policy_compliance(
 -                             config["credential_id"], provider, PluginCredentialType.MODEL
 -                         )
 -             except Exception as e:
 -                 raise ValueError(f"Invalid load balancing credentials for {provider}/{model_name}: {str(e)}")
 - 
 -     def _is_load_balancing_enabled(self, tenant_id: str, provider: str, model_name: str) -> bool:
 -         """
 -         Check if load balancing is enabled for a specific model.
 - 
 -         :param tenant_id: The tenant ID
 -         :param provider: The provider name
 -         :param model_name: The model name
 -         :return: True if load balancing is enabled, False otherwise
 -         """
 -         try:
 -             from core.model_runtime.entities.model_entities import ModelType
 -             from core.provider_manager import ProviderManager
 - 
 -             # Get provider configurations
 -             provider_manager = ProviderManager()
 -             provider_configurations = provider_manager.get_configurations(tenant_id)
 -             provider_configuration = provider_configurations.get(provider)
 - 
 -             if not provider_configuration:
 -                 return False
 - 
 -             # Get provider model setting
 -             provider_model_setting = provider_configuration.get_provider_model_setting(
 -                 model_type=ModelType.LLM,
 -                 model=model_name,
 -             )
 -             return provider_model_setting is not None and provider_model_setting.load_balancing_enabled
 - 
 -         except Exception:
 -             # If we can't determine the status, assume load balancing is not enabled
 -             return False
 - 
 -     def _get_load_balancing_configs(self, tenant_id: str, provider: str, model_name: str) -> list[dict]:
 -         """
 -         Get all load balancing configurations for a model.
 - 
 -         :param tenant_id: The tenant ID
 -         :param provider: The provider name
 -         :param model_name: The model name
 -         :return: List of load balancing configuration dictionaries
 -         """
 -         try:
 -             from services.model_load_balancing_service import ModelLoadBalancingService
 - 
 -             model_load_balancing_service = ModelLoadBalancingService()
 -             _, configs = model_load_balancing_service.get_load_balancing_configs(
 -                 tenant_id=tenant_id,
 -                 provider=provider,
 -                 model=model_name,
 -                 model_type="llm",  # Load balancing is primarily used for LLM models
 -                 config_from="predefined-model",  # Check both predefined and custom models
 -             )
 - 
 -             _, custom_configs = model_load_balancing_service.get_load_balancing_configs(
 -                 tenant_id=tenant_id, provider=provider, model=model_name, model_type="llm", config_from="custom-model"
 -             )
 -             all_configs = configs + custom_configs
 - 
 -             return [config for config in all_configs if config.get("credential_id")]
 - 
 -         except Exception:
 -             # If we can't get the configurations, return empty list
 -             # This will prevent validation errors from breaking the workflow
 -             return []
 - 
 -     def get_default_block_configs(self) -> list[dict]:
 -         """
 -         Get default block configs
 -         """
 -         # return default block config
 -         default_block_configs = []
 -         for node_class_mapping in NODE_TYPE_CLASSES_MAPPING.values():
 -             node_class = node_class_mapping[LATEST_VERSION]
 -             default_config = node_class.get_default_config()
 -             if default_config:
 -                 default_block_configs.append(default_config)
 - 
 -         return default_block_configs
 - 
 -     def get_default_block_config(self, node_type: str, filters: Optional[dict] = None) -> Optional[dict]:
 -         """
 -         Get default config of node.
 -         :param node_type: node type
 -         :param filters: filter by node config parameters.
 -         :return:
 -         """
 -         node_type_enum = NodeType(node_type)
 - 
 -         # return default block config
 -         if node_type_enum not in NODE_TYPE_CLASSES_MAPPING:
 -             return None
 - 
 -         node_class = NODE_TYPE_CLASSES_MAPPING[node_type_enum][LATEST_VERSION]
 -         default_config = node_class.get_default_config(filters=filters)
 -         if not default_config:
 -             return None
 - 
 -         return default_config
 - 
 -     def run_draft_workflow_node(
 -         self,
 -         app_model: App,
 -         draft_workflow: Workflow,
 -         node_id: str,
 -         user_inputs: Mapping[str, Any],
 -         account: Account,
 -         query: str = "",
 -         files: Sequence[File] | None = None,
 -     ) -> WorkflowNodeExecutionModel:
 -         """
 -         Run draft workflow node
 -         """
 -         files = files or []
 - 
 -         with Session(bind=db.engine, expire_on_commit=False) as session, session.begin():
 -             draft_var_srv = WorkflowDraftVariableService(session)
 -             draft_var_srv.prefill_conversation_variable_default_values(draft_workflow)
 - 
 -         node_config = draft_workflow.get_node_config_by_id(node_id)
 -         node_type = Workflow.get_node_type_from_node_config(node_config)
 -         node_data = node_config.get("data", {})
 -         if node_type == NodeType.START:
 -             with Session(bind=db.engine) as session, session.begin():
 -                 draft_var_srv = WorkflowDraftVariableService(session)
 -                 conversation_id = draft_var_srv.get_or_create_conversation(
 -                     account_id=account.id,
 -                     app=app_model,
 -                     workflow=draft_workflow,
 -                 )
 -                 start_data = StartNodeData.model_validate(node_data)
 -                 user_inputs = _rebuild_file_for_user_inputs_in_start_node(
 -                     tenant_id=draft_workflow.tenant_id, start_node_data=start_data, user_inputs=user_inputs
 -                 )
 -                 # init variable pool
 -                 variable_pool = _setup_variable_pool(
 -                     query=query,
 -                     files=files or [],
 -                     user_id=account.id,
 -                     user_inputs=user_inputs,
 -                     workflow=draft_workflow,
 -                     # NOTE(QuantumGhost): We rely on `DraftVarLoader` to load conversation variables.
 -                     conversation_variables=[],
 -                     node_type=node_type,
 -                     conversation_id=conversation_id,
 -                 )
 - 
 -         else:
 -             variable_pool = VariablePool(
 -                 system_variables=SystemVariable.empty(),
 -                 user_inputs=user_inputs,
 -                 environment_variables=draft_workflow.environment_variables,
 -                 conversation_variables=[],
 -             )
 - 
 -         variable_loader = DraftVarLoader(
 -             engine=db.engine,
 -             app_id=app_model.id,
 -             tenant_id=app_model.tenant_id,
 -         )
 - 
 -         enclosing_node_type_and_id = draft_workflow.get_enclosing_node_type_and_id(node_config)
 -         if enclosing_node_type_and_id:
 -             _, enclosing_node_id = enclosing_node_type_and_id
 -         else:
 -             enclosing_node_id = None
 - 
 -         run = WorkflowEntry.single_step_run(
 -             workflow=draft_workflow,
 -             node_id=node_id,
 -             user_inputs=user_inputs,
 -             user_id=account.id,
 -             variable_pool=variable_pool,
 -             variable_loader=variable_loader,
 -         )
 - 
 -         # run draft workflow node
 -         start_at = time.perf_counter()
 -         node_execution = self._handle_node_run_result(
 -             invoke_node_fn=lambda: run,
 -             start_at=start_at,
 -             node_id=node_id,
 -         )
 - 
 -         # Set workflow_id on the NodeExecution
 -         node_execution.workflow_id = draft_workflow.id
 - 
 -         # Create repository and save the node execution
 -         repository = DifyCoreRepositoryFactory.create_workflow_node_execution_repository(
 -             session_factory=db.engine,
 -             user=account,
 -             app_id=app_model.id,
 -             triggered_from=WorkflowNodeExecutionTriggeredFrom.SINGLE_STEP,
 -         )
 -         repository.save(node_execution)
 - 
 -         workflow_node_execution = self._node_execution_service_repo.get_execution_by_id(node_execution.id)
 -         if workflow_node_execution is None:
 -             raise ValueError(f"WorkflowNodeExecution with id {node_execution.id} not found after saving")
 - 
 -         with Session(bind=db.engine) as session, session.begin():
 -             draft_var_saver = DraftVariableSaver(
 -                 session=session,
 -                 app_id=app_model.id,
 -                 node_id=workflow_node_execution.node_id,
 -                 node_type=NodeType(workflow_node_execution.node_type),
 -                 enclosing_node_id=enclosing_node_id,
 -                 node_execution_id=node_execution.id,
 -             )
 -             draft_var_saver.save(process_data=node_execution.process_data, outputs=node_execution.outputs)
 -             session.commit()
 - 
 -         return workflow_node_execution
 - 
 -     def run_free_workflow_node(
 -         self, node_data: dict, tenant_id: str, user_id: str, node_id: str, user_inputs: dict[str, Any]
 -     ) -> WorkflowNodeExecution:
 -         """
 -         Run free workflow node
 -         """
 -         # run free workflow node
 -         start_at = time.perf_counter()
 - 
 -         node_execution = self._handle_node_run_result(
 -             invoke_node_fn=lambda: WorkflowEntry.run_free_node(
 -                 node_id=node_id,
 -                 node_data=node_data,
 -                 tenant_id=tenant_id,
 -                 user_id=user_id,
 -                 user_inputs=user_inputs,
 -             ),
 -             start_at=start_at,
 -             node_id=node_id,
 -         )
 - 
 -         return node_execution
 - 
 -     def _handle_node_run_result(
 -         self,
 -         invoke_node_fn: Callable[[], tuple[BaseNode, Generator[NodeEvent | InNodeEvent, None, None]]],
 -         start_at: float,
 -         node_id: str,
 -     ) -> WorkflowNodeExecution:
 -         try:
 -             node, node_events = invoke_node_fn()
 - 
 -             node_run_result: NodeRunResult | None = None
 -             for event in node_events:
 -                 if isinstance(event, RunCompletedEvent):
 -                     node_run_result = event.run_result
 - 
 -                     # sign output files
 -                     # node_run_result.outputs = WorkflowEntry.handle_special_values(node_run_result.outputs)
 -                     break
 - 
 -             if not node_run_result:
 -                 raise ValueError("Node run failed with no run result")
 -             # single step debug mode error handling return
 -             if node_run_result.status == WorkflowNodeExecutionStatus.FAILED and node.continue_on_error:
 -                 node_error_args: dict[str, Any] = {
 -                     "status": WorkflowNodeExecutionStatus.EXCEPTION,
 -                     "error": node_run_result.error,
 -                     "inputs": node_run_result.inputs,
 -                     "metadata": {"error_strategy": node.error_strategy},
 -                 }
 -                 if node.error_strategy is ErrorStrategy.DEFAULT_VALUE:
 -                     node_run_result = NodeRunResult(
 -                         **node_error_args,
 -                         outputs={
 -                             **node.default_value_dict,
 -                             "error_message": node_run_result.error,
 -                             "error_type": node_run_result.error_type,
 -                         },
 -                     )
 -                 else:
 -                     node_run_result = NodeRunResult(
 -                         **node_error_args,
 -                         outputs={
 -                             "error_message": node_run_result.error,
 -                             "error_type": node_run_result.error_type,
 -                         },
 -                     )
 -             run_succeeded = node_run_result.status in (
 -                 WorkflowNodeExecutionStatus.SUCCEEDED,
 -                 WorkflowNodeExecutionStatus.EXCEPTION,
 -             )
 -             error = node_run_result.error if not run_succeeded else None
 -         except WorkflowNodeRunFailedError as e:
 -             node = e.node
 -             run_succeeded = False
 -             node_run_result = None
 -             error = e.error
 - 
 -         # Create a NodeExecution domain model
 -         node_execution = WorkflowNodeExecution(
 -             id=str(uuid4()),
 -             workflow_id="",  # This is a single-step execution, so no workflow ID
 -             index=1,
 -             node_id=node_id,
 -             node_type=node.type_,
 -             title=node.title,
 -             elapsed_time=time.perf_counter() - start_at,
 -             created_at=naive_utc_now(),
 -             finished_at=naive_utc_now(),
 -         )
 - 
 -         if run_succeeded and node_run_result:
 -             # Set inputs, process_data, and outputs as dictionaries (not JSON strings)
 -             inputs = WorkflowEntry.handle_special_values(node_run_result.inputs) if node_run_result.inputs else None
 -             process_data = (
 -                 WorkflowEntry.handle_special_values(node_run_result.process_data)
 -                 if node_run_result.process_data
 -                 else None
 -             )
 -             outputs = node_run_result.outputs
 - 
 -             node_execution.inputs = inputs
 -             node_execution.process_data = process_data
 -             node_execution.outputs = outputs
 -             node_execution.metadata = node_run_result.metadata
 - 
 -             # Map status from WorkflowNodeExecutionStatus to NodeExecutionStatus
 -             if node_run_result.status == WorkflowNodeExecutionStatus.SUCCEEDED:
 -                 node_execution.status = WorkflowNodeExecutionStatus.SUCCEEDED
 -             elif node_run_result.status == WorkflowNodeExecutionStatus.EXCEPTION:
 -                 node_execution.status = WorkflowNodeExecutionStatus.EXCEPTION
 -                 node_execution.error = node_run_result.error
 -         else:
 -             # Set failed status and error
 -             node_execution.status = WorkflowNodeExecutionStatus.FAILED
 -             node_execution.error = error
 - 
 -         return node_execution
 - 
 -     def convert_to_workflow(self, app_model: App, account: Account, args: dict) -> App:
 -         """
 -         Basic mode of chatbot app(expert mode) to workflow
 -         Completion App to Workflow App
 - 
 -         :param app_model: App instance
 -         :param account: Account instance
 -         :param args: dict
 -         :return:
 -         """
 -         # chatbot convert to workflow mode
 -         workflow_converter = WorkflowConverter()
 - 
 -         if app_model.mode not in {AppMode.CHAT, AppMode.COMPLETION}:
 -             raise ValueError(f"Current App mode: {app_model.mode} is not supported convert to workflow.")
 - 
 -         # convert to workflow
 -         new_app: App = workflow_converter.convert_to_workflow(
 -             app_model=app_model,
 -             account=account,
 -             name=args.get("name", "Default Name"),
 -             icon_type=args.get("icon_type", "emoji"),
 -             icon=args.get("icon", "🤖"),
 -             icon_background=args.get("icon_background", "#FFEAD5"),
 -         )
 - 
 -         return new_app
 - 
 -     def validate_features_structure(self, app_model: App, features: dict):
 -         if app_model.mode == AppMode.ADVANCED_CHAT:
 -             return AdvancedChatAppConfigManager.config_validate(
 -                 tenant_id=app_model.tenant_id, config=features, only_structure_validate=True
 -             )
 -         elif app_model.mode == AppMode.WORKFLOW:
 -             return WorkflowAppConfigManager.config_validate(
 -                 tenant_id=app_model.tenant_id, config=features, only_structure_validate=True
 -             )
 -         else:
 -             raise ValueError(f"Invalid app mode: {app_model.mode}")
 - 
 -     def update_workflow(
 -         self, *, session: Session, workflow_id: str, tenant_id: str, account_id: str, data: dict
 -     ) -> Optional[Workflow]:
 -         """
 -         Update workflow attributes
 - 
 -         :param session: SQLAlchemy database session
 -         :param workflow_id: Workflow ID
 -         :param tenant_id: Tenant ID
 -         :param account_id: Account ID (for permission check)
 -         :param data: Dictionary containing fields to update
 -         :return: Updated workflow or None if not found
 -         """
 -         stmt = select(Workflow).where(Workflow.id == workflow_id, Workflow.tenant_id == tenant_id)
 -         workflow = session.scalar(stmt)
 - 
 -         if not workflow:
 -             return None
 - 
 -         allowed_fields = ["marked_name", "marked_comment"]
 - 
 -         for field, value in data.items():
 -             if field in allowed_fields:
 -                 setattr(workflow, field, value)
 - 
 -         workflow.updated_by = account_id
 -         workflow.updated_at = naive_utc_now()
 - 
 -         return workflow
 - 
 -     def delete_workflow(self, *, session: Session, workflow_id: str, tenant_id: str) -> bool:
 -         """
 -         Delete a workflow
 - 
 -         :param session: SQLAlchemy database session
 -         :param workflow_id: Workflow ID
 -         :param tenant_id: Tenant ID
 -         :return: True if successful
 -         :raises: ValueError if workflow not found
 -         :raises: WorkflowInUseError if workflow is in use
 -         :raises: DraftWorkflowDeletionError if workflow is a draft version
 -         """
 -         stmt = select(Workflow).where(Workflow.id == workflow_id, Workflow.tenant_id == tenant_id)
 -         workflow = session.scalar(stmt)
 - 
 -         if not workflow:
 -             raise ValueError(f"Workflow with ID {workflow_id} not found")
 - 
 -         # Check if workflow is a draft version
 -         if workflow.version == Workflow.VERSION_DRAFT:
 -             raise DraftWorkflowDeletionError("Cannot delete draft workflow versions")
 - 
 -         # Check if this workflow is currently referenced by an app
 -         app_stmt = select(App).where(App.workflow_id == workflow_id)
 -         app = session.scalar(app_stmt)
 -         if app:
 -             # Cannot delete a workflow that's currently in use by an app
 -             raise WorkflowInUseError(f"Cannot delete workflow that is currently in use by app '{app.id}'")
 - 
 -         # Don't use workflow.tool_published as it's not accurate for specific workflow versions
 -         # Check if there's a tool provider using this specific workflow version
 -         tool_provider = (
 -             session.query(WorkflowToolProvider)
 -             .where(
 -                 WorkflowToolProvider.tenant_id == workflow.tenant_id,
 -                 WorkflowToolProvider.app_id == workflow.app_id,
 -                 WorkflowToolProvider.version == workflow.version,
 -             )
 -             .first()
 -         )
 - 
 -         if tool_provider:
 -             # Cannot delete a workflow that's published as a tool
 -             raise WorkflowInUseError("Cannot delete workflow that is published as a tool")
 - 
 -         session.delete(workflow)
 -         return True
 - 
 - 
 - def _setup_variable_pool(
 -     query: str,
 -     files: Sequence[File],
 -     user_id: str,
 -     user_inputs: Mapping[str, Any],
 -     workflow: Workflow,
 -     node_type: NodeType,
 -     conversation_id: str,
 -     conversation_variables: list[Variable],
 - ):
 -     # Only inject system variables for START node type.
 -     if node_type == NodeType.START:
 -         system_variable = SystemVariable(
 -             user_id=user_id,
 -             app_id=workflow.app_id,
 -             workflow_id=workflow.id,
 -             files=files or [],
 -             workflow_execution_id=str(uuid.uuid4()),
 -         )
 - 
 -         # Only add chatflow-specific variables for non-workflow types
 -         if workflow.type != WorkflowType.WORKFLOW.value:
 -             system_variable.query = query
 -             system_variable.conversation_id = conversation_id
 -             system_variable.dialogue_count = 0
 -     else:
 -         system_variable = SystemVariable.empty()
 - 
 -     # init variable pool
 -     variable_pool = VariablePool(
 -         system_variables=system_variable,
 -         user_inputs=user_inputs,
 -         environment_variables=workflow.environment_variables,
 -         # Based on the definition of `VariableUnion`,
 -         # `list[Variable]` can be safely used as `list[VariableUnion]` since they are compatible.
 -         conversation_variables=cast(list[VariableUnion], conversation_variables),  #
 -     )
 - 
 -     return variable_pool
 - 
 - 
 - def _rebuild_file_for_user_inputs_in_start_node(
 -     tenant_id: str, start_node_data: StartNodeData, user_inputs: Mapping[str, Any]
 - ) -> Mapping[str, Any]:
 -     inputs_copy = dict(user_inputs)
 - 
 -     for variable in start_node_data.variables:
 -         if variable.type not in (VariableEntityType.FILE, VariableEntityType.FILE_LIST):
 -             continue
 -         if variable.variable not in user_inputs:
 -             continue
 -         value = user_inputs[variable.variable]
 -         file = _rebuild_single_file(tenant_id=tenant_id, value=value, variable_entity_type=variable.type)
 -         inputs_copy[variable.variable] = file
 -     return inputs_copy
 - 
 - 
 - def _rebuild_single_file(tenant_id: str, value: Any, variable_entity_type: VariableEntityType) -> File | Sequence[File]:
 -     if variable_entity_type == VariableEntityType.FILE:
 -         if not isinstance(value, dict):
 -             raise ValueError(f"expected dict for file object, got {type(value)}")
 -         return build_from_mapping(mapping=value, tenant_id=tenant_id)
 -     elif variable_entity_type == VariableEntityType.FILE_LIST:
 -         if not isinstance(value, list):
 -             raise ValueError(f"expected list for file list object, got {type(value)}")
 -         if len(value) == 0:
 -             return []
 -         if not isinstance(value[0], dict):
 -             raise ValueError(f"expected dict for first element in the file list, got {type(value)}")
 -         return build_from_mappings(mappings=value, tenant_id=tenant_id)
 -     else:
 -         raise Exception("unreachable")
 
 
  |