| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157 |
- import logging
- import tempfile
- import time
- import uuid
- from pathlib import Path
-
- import click
- import pandas as pd
- from celery import shared_task
- from sqlalchemy import func
- from sqlalchemy.orm import Session
-
- from core.model_manager import ModelManager
- from core.model_runtime.entities.model_entities import ModelType
- from extensions.ext_database import db
- from extensions.ext_redis import redis_client
- from extensions.ext_storage import storage
- from libs import helper
- from libs.datetime_utils import naive_utc_now
- from models.dataset import Dataset, Document, DocumentSegment
- from models.model import UploadFile
- from services.vector_service import VectorService
-
- logger = logging.getLogger(__name__)
-
-
- @shared_task(queue="dataset")
- def batch_create_segment_to_index_task(
- job_id: str,
- upload_file_id: str,
- dataset_id: str,
- document_id: str,
- tenant_id: str,
- user_id: str,
- ):
- """
- Async batch create segment to index
- :param job_id:
- :param upload_file_id:
- :param dataset_id:
- :param document_id:
- :param tenant_id:
- :param user_id:
-
- Usage: batch_create_segment_to_index_task.delay(job_id, upload_file_id, dataset_id, document_id, tenant_id, user_id)
- """
- logger.info(click.style(f"Start batch create segment jobId: {job_id}", fg="green"))
- start_at = time.perf_counter()
-
- indexing_cache_key = f"segment_batch_import_{job_id}"
-
- try:
- with Session(db.engine) as session:
- dataset = session.get(Dataset, dataset_id)
- if not dataset:
- raise ValueError("Dataset not exist.")
-
- dataset_document = session.get(Document, document_id)
- if not dataset_document:
- raise ValueError("Document not exist.")
-
- if (
- not dataset_document.enabled
- or dataset_document.archived
- or dataset_document.indexing_status != "completed"
- ):
- raise ValueError("Document is not available.")
-
- upload_file = session.get(UploadFile, upload_file_id)
- if not upload_file:
- raise ValueError("UploadFile not found.")
-
- with tempfile.TemporaryDirectory() as temp_dir:
- suffix = Path(upload_file.key).suffix
- # FIXME mypy: Cannot determine type of 'tempfile._get_candidate_names' better not use it here
- file_path = f"{temp_dir}/{next(tempfile._get_candidate_names())}{suffix}" # type: ignore
- storage.download(upload_file.key, file_path)
-
- # Skip the first row
- df = pd.read_csv(file_path)
- content = []
- for _, row in df.iterrows():
- if dataset_document.doc_form == "qa_model":
- data = {"content": row.iloc[0], "answer": row.iloc[1]}
- else:
- data = {"content": row.iloc[0]}
- content.append(data)
- if len(content) == 0:
- raise ValueError("The CSV file is empty.")
-
- document_segments = []
- embedding_model = None
- if dataset.indexing_technique == "high_quality":
- model_manager = ModelManager()
- embedding_model = model_manager.get_model_instance(
- tenant_id=dataset.tenant_id,
- provider=dataset.embedding_model_provider,
- model_type=ModelType.TEXT_EMBEDDING,
- model=dataset.embedding_model,
- )
- word_count_change = 0
- if embedding_model:
- tokens_list = embedding_model.get_text_embedding_num_tokens(
- texts=[segment["content"] for segment in content]
- )
- else:
- tokens_list = [0] * len(content)
- for segment, tokens in zip(content, tokens_list):
- content = segment["content"]
- doc_id = str(uuid.uuid4())
- segment_hash = helper.generate_text_hash(content) # type: ignore
- max_position = (
- db.session.query(func.max(DocumentSegment.position))
- .where(DocumentSegment.document_id == dataset_document.id)
- .scalar()
- )
- segment_document = DocumentSegment(
- tenant_id=tenant_id,
- dataset_id=dataset_id,
- document_id=document_id,
- index_node_id=doc_id,
- index_node_hash=segment_hash,
- position=max_position + 1 if max_position else 1,
- content=content,
- word_count=len(content),
- tokens=tokens,
- created_by=user_id,
- indexing_at=naive_utc_now(),
- status="completed",
- completed_at=naive_utc_now(),
- )
- if dataset_document.doc_form == "qa_model":
- segment_document.answer = segment["answer"]
- segment_document.word_count += len(segment["answer"])
- word_count_change += segment_document.word_count
- db.session.add(segment_document)
- document_segments.append(segment_document)
- # update document word count
- assert dataset_document.word_count is not None
- dataset_document.word_count += word_count_change
- db.session.add(dataset_document)
- # add index to db
- VectorService.create_segments_vector(None, document_segments, dataset, dataset_document.doc_form)
- db.session.commit()
- redis_client.setex(indexing_cache_key, 600, "completed")
- end_at = time.perf_counter()
- logger.info(
- click.style(
- f"Segment batch created job: {job_id} latency: {end_at - start_at}",
- fg="green",
- )
- )
- except Exception:
- logger.exception("Segments batch created index failed")
- redis_client.setex(indexing_cache_key, 600, "error")
- finally:
- db.session.close()
|