You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Jyong 9d221a5e19
external knowledge api (#8913)
пре 1 година
..
.idea fix nltk averaged_perceptron_tagger download and fix score limit is none (#7582) пре 1 година
.vscode chore: remove .idea and .vscode from root path (#7437) пре 1 година
configs feat: add min-connection and max-connection for pgvector (#8841) пре 1 година
constants feat: regenerate in `Chat`, `agent` and `Chatflow` app (#7661) пре 1 година
contexts chore(api): Introduce Ruff Formatter. (#7291) пре 1 година
controllers external knowledge api (#8913) пре 1 година
core external knowledge api (#8913) пре 1 година
docker fix: use LOG_LEVEL for celery startup (#7628) пре 1 година
events chore: bump ruff to 0.6.8 for fixing violation in SIM910 (#8869) пре 1 година
extensions add storage error log (#8556) пре 1 година
fields external knowledge api (#8913) пре 1 година
libs chore: refurish python code by applying Pylint linter rules (#8322) пре 1 година
migrations external knowledge api (#8913) пре 1 година
models external knowledge api (#8913) пре 1 година
schedule external knowledge api (#8913) пре 1 година
services external knowledge api (#8913) пре 1 година
tasks external knowledge api (#8913) пре 1 година
templates feat: implement forgot password feature (#5534) пре 1 година
tests feat(api): add version comparison logic (#8902) пре 1 година
.dockerignore build: support Poetry for depencencies tool in api's Dockerfile (#5105) пре 1 година
.env.example feat: add min-connection and max-connection for pgvector (#8841) пре 1 година
Dockerfile fix: Version '2.6.2-2' for 'expat' was not found (#8182) пре 1 година
README.md Enhance Readme Documentation to Clarify the Importance of Celery Service (#8558) пре 1 година
app.py chore: remove windows platform timezone set (#8712) пре 1 година
commands.py fix: typos and improve naming conventions: (#8687) пре 1 година
poetry.lock external knowledge api (#8913) пре 1 година
poetry.toml build: initial support for poetry build tool (#4513) пре 1 година
pyproject.toml external knowledge api (#8913) пре 1 година

README.md

Dify Backend API

Usage

[!IMPORTANT] In the v0.6.12 release, we deprecated pip as the package management tool for Dify API Backend service and replaced it with poetry.

  1. Start the docker-compose stack

The backend require some middleware, including PostgreSQL, Redis, and Weaviate, which can be started together using docker-compose.

   cd ../docker
   cp middleware.env.example middleware.env
   # change the profile to other vector database if you are not using weaviate
   docker compose -f docker-compose.middleware.yaml --profile weaviate -p dify up -d
   cd ../api
  1. Copy .env.example to .env
  2. Generate a SECRET_KEY in the .env file.
   sed -i "/^SECRET_KEY=/c\SECRET_KEY=$(openssl rand -base64 42)" .env
   secret_key=$(openssl rand -base64 42)
   sed -i '' "/^SECRET_KEY=/c\\
   SECRET_KEY=${secret_key}" .env
  1. Create environment.

Dify API service uses Poetry to manage dependencies. You can execute poetry shell to activate the environment.

  1. Install dependencies
   poetry env use 3.10
   poetry install

In case of contributors missing to update dependencies for pyproject.toml, you can perform the following shell instead.

   poetry shell                                               # activate current environment
   poetry add $(cat requirements.txt)           # install dependencies of production and update pyproject.toml
   poetry add $(cat requirements-dev.txt) --group dev    # install dependencies of development and update pyproject.toml
  1. Run migrate

Before the first launch, migrate the database to the latest version.

   poetry run python -m flask db upgrade
  1. Start backend
   poetry run python -m flask run --host 0.0.0.0 --port=5001 --debug
  1. Start Dify web service.
  2. Setup your application by visiting http://localhost:3000
  3. If you need to handle and debug the async tasks (e.g. dataset importing and documents indexing), please start the worker service.
   poetry run python -m celery -A app.celery worker -P gevent -c 1 --loglevel INFO -Q dataset,generation,mail,ops_trace,app_deletion

Testing

  1. Install dependencies for both the backend and the test environment
   poetry install --with dev
  1. Run the tests locally with mocked system environment variables in tool.pytest_env section in pyproject.toml
   cd ../
   poetry run -C api bash dev/pytest/pytest_all_tests.sh