You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

rag_pipeline_dsl_service.py 38KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897
  1. import base64
  2. import hashlib
  3. import json
  4. import logging
  5. import uuid
  6. from collections.abc import Mapping
  7. from datetime import UTC, datetime
  8. from enum import StrEnum
  9. from typing import Optional, cast
  10. from urllib.parse import urlparse
  11. from uuid import uuid4
  12. import yaml # type: ignore
  13. from Crypto.Cipher import AES
  14. from Crypto.Util.Padding import pad, unpad
  15. from flask_login import current_user
  16. from packaging import version
  17. from pydantic import BaseModel, Field
  18. from sqlalchemy import select
  19. from sqlalchemy.orm import Session
  20. from core.helper import ssrf_proxy
  21. from core.model_runtime.utils.encoders import jsonable_encoder
  22. from core.plugin.entities.plugin import PluginDependency
  23. from core.workflow.nodes.enums import NodeType
  24. from core.workflow.nodes.knowledge_retrieval.entities import KnowledgeRetrievalNodeData
  25. from core.workflow.nodes.llm.entities import LLMNodeData
  26. from core.workflow.nodes.parameter_extractor.entities import ParameterExtractorNodeData
  27. from core.workflow.nodes.question_classifier.entities import QuestionClassifierNodeData
  28. from core.workflow.nodes.tool.entities import ToolNodeData
  29. from extensions.ext_database import db
  30. from extensions.ext_redis import redis_client
  31. from factories import variable_factory
  32. from models import Account
  33. from models.dataset import Dataset, DatasetCollectionBinding, Pipeline
  34. from models.workflow import Workflow, WorkflowType
  35. from services.entities.knowledge_entities.rag_pipeline_entities import (
  36. KnowledgeConfiguration,
  37. RagPipelineDatasetCreateEntity,
  38. )
  39. from services.plugin.dependencies_analysis import DependenciesAnalysisService
  40. logger = logging.getLogger(__name__)
  41. IMPORT_INFO_REDIS_KEY_PREFIX = "app_import_info:"
  42. CHECK_DEPENDENCIES_REDIS_KEY_PREFIX = "app_check_dependencies:"
  43. IMPORT_INFO_REDIS_EXPIRY = 10 * 60 # 10 minutes
  44. DSL_MAX_SIZE = 10 * 1024 * 1024 # 10MB
  45. CURRENT_DSL_VERSION = "0.1.0"
  46. class ImportMode(StrEnum):
  47. YAML_CONTENT = "yaml-content"
  48. YAML_URL = "yaml-url"
  49. class ImportStatus(StrEnum):
  50. COMPLETED = "completed"
  51. COMPLETED_WITH_WARNINGS = "completed-with-warnings"
  52. PENDING = "pending"
  53. FAILED = "failed"
  54. class RagPipelineImportInfo(BaseModel):
  55. id: str
  56. status: ImportStatus
  57. pipeline_id: Optional[str] = None
  58. current_dsl_version: str = CURRENT_DSL_VERSION
  59. imported_dsl_version: str = ""
  60. error: str = ""
  61. dataset_id: Optional[str] = None
  62. class CheckDependenciesResult(BaseModel):
  63. leaked_dependencies: list[PluginDependency] = Field(default_factory=list)
  64. def _check_version_compatibility(imported_version: str) -> ImportStatus:
  65. """Determine import status based on version comparison"""
  66. try:
  67. current_ver = version.parse(CURRENT_DSL_VERSION)
  68. imported_ver = version.parse(imported_version)
  69. except version.InvalidVersion:
  70. return ImportStatus.FAILED
  71. # If imported version is newer than current, always return PENDING
  72. if imported_ver > current_ver:
  73. return ImportStatus.PENDING
  74. # If imported version is older than current's major, return PENDING
  75. if imported_ver.major < current_ver.major:
  76. return ImportStatus.PENDING
  77. # If imported version is older than current's minor, return COMPLETED_WITH_WARNINGS
  78. if imported_ver.minor < current_ver.minor:
  79. return ImportStatus.COMPLETED_WITH_WARNINGS
  80. # If imported version equals or is older than current's micro, return COMPLETED
  81. return ImportStatus.COMPLETED
  82. class RagPipelinePendingData(BaseModel):
  83. import_mode: str
  84. yaml_content: str
  85. pipeline_id: str | None
  86. class CheckDependenciesPendingData(BaseModel):
  87. dependencies: list[PluginDependency]
  88. pipeline_id: str | None
  89. class RagPipelineDslService:
  90. def __init__(self, session: Session):
  91. self._session = session
  92. def import_rag_pipeline(
  93. self,
  94. *,
  95. account: Account,
  96. import_mode: str,
  97. yaml_content: Optional[str] = None,
  98. yaml_url: Optional[str] = None,
  99. pipeline_id: Optional[str] = None,
  100. dataset: Optional[Dataset] = None,
  101. ) -> RagPipelineImportInfo:
  102. """Import an app from YAML content or URL."""
  103. import_id = str(uuid.uuid4())
  104. # Validate import mode
  105. try:
  106. mode = ImportMode(import_mode)
  107. except ValueError:
  108. raise ValueError(f"Invalid import_mode: {import_mode}")
  109. # Get YAML content
  110. content: str = ""
  111. if mode == ImportMode.YAML_URL:
  112. if not yaml_url:
  113. return RagPipelineImportInfo(
  114. id=import_id,
  115. status=ImportStatus.FAILED,
  116. error="yaml_url is required when import_mode is yaml-url",
  117. )
  118. try:
  119. parsed_url = urlparse(yaml_url)
  120. if (
  121. parsed_url.scheme == "https"
  122. and parsed_url.netloc == "github.com"
  123. and parsed_url.path.endswith((".yml", ".yaml"))
  124. ):
  125. yaml_url = yaml_url.replace("https://github.com", "https://raw.githubusercontent.com")
  126. yaml_url = yaml_url.replace("/blob/", "/")
  127. response = ssrf_proxy.get(yaml_url.strip(), follow_redirects=True, timeout=(10, 10))
  128. response.raise_for_status()
  129. content = response.content.decode()
  130. if len(content) > DSL_MAX_SIZE:
  131. return RagPipelineImportInfo(
  132. id=import_id,
  133. status=ImportStatus.FAILED,
  134. error="File size exceeds the limit of 10MB",
  135. )
  136. if not content:
  137. return RagPipelineImportInfo(
  138. id=import_id,
  139. status=ImportStatus.FAILED,
  140. error="Empty content from url",
  141. )
  142. except Exception as e:
  143. return RagPipelineImportInfo(
  144. id=import_id,
  145. status=ImportStatus.FAILED,
  146. error=f"Error fetching YAML from URL: {str(e)}",
  147. )
  148. elif mode == ImportMode.YAML_CONTENT:
  149. if not yaml_content:
  150. return RagPipelineImportInfo(
  151. id=import_id,
  152. status=ImportStatus.FAILED,
  153. error="yaml_content is required when import_mode is yaml-content",
  154. )
  155. content = yaml_content
  156. # Process YAML content
  157. try:
  158. # Parse YAML to validate format
  159. data = yaml.safe_load(content)
  160. if not isinstance(data, dict):
  161. return RagPipelineImportInfo(
  162. id=import_id,
  163. status=ImportStatus.FAILED,
  164. error="Invalid YAML format: content must be a mapping",
  165. )
  166. # Validate and fix DSL version
  167. if not data.get("version"):
  168. data["version"] = "0.1.0"
  169. if not data.get("kind") or data.get("kind") != "rag-pipeline":
  170. data["kind"] = "rag-pipeline"
  171. imported_version = data.get("version", "0.1.0")
  172. # check if imported_version is a float-like string
  173. if not isinstance(imported_version, str):
  174. raise ValueError(f"Invalid version type, expected str, got {type(imported_version)}")
  175. status = _check_version_compatibility(imported_version)
  176. # Extract app data
  177. pipeline_data = data.get("rag_pipeline")
  178. if not pipeline_data:
  179. return RagPipelineImportInfo(
  180. id=import_id,
  181. status=ImportStatus.FAILED,
  182. error="Missing rag_pipeline data in YAML content",
  183. )
  184. # If app_id is provided, check if it exists
  185. pipeline = None
  186. if pipeline_id:
  187. stmt = select(Pipeline).where(
  188. Pipeline.id == pipeline_id,
  189. Pipeline.tenant_id == account.current_tenant_id,
  190. )
  191. pipeline = self._session.scalar(stmt)
  192. if not pipeline:
  193. return RagPipelineImportInfo(
  194. id=import_id,
  195. status=ImportStatus.FAILED,
  196. error="Pipeline not found",
  197. )
  198. # If major version mismatch, store import info in Redis
  199. if status == ImportStatus.PENDING:
  200. pending_data = RagPipelinePendingData(
  201. import_mode=import_mode,
  202. yaml_content=content,
  203. pipeline_id=pipeline_id,
  204. )
  205. redis_client.setex(
  206. f"{IMPORT_INFO_REDIS_KEY_PREFIX}{import_id}",
  207. IMPORT_INFO_REDIS_EXPIRY,
  208. pending_data.model_dump_json(),
  209. )
  210. return RagPipelineImportInfo(
  211. id=import_id,
  212. status=status,
  213. pipeline_id=pipeline_id,
  214. imported_dsl_version=imported_version,
  215. )
  216. # Extract dependencies
  217. dependencies = data.get("dependencies", [])
  218. check_dependencies_pending_data = None
  219. if dependencies:
  220. check_dependencies_pending_data = [PluginDependency.model_validate(d) for d in dependencies]
  221. # Create or update pipeline
  222. pipeline = self._create_or_update_pipeline(
  223. pipeline=pipeline,
  224. data=data,
  225. account=account,
  226. dependencies=check_dependencies_pending_data,
  227. )
  228. # create dataset
  229. name = pipeline.name
  230. description = pipeline.description
  231. icon_type = data.get("rag_pipeline", {}).get("icon_type")
  232. icon = data.get("rag_pipeline", {}).get("icon")
  233. icon_background = data.get("rag_pipeline", {}).get("icon_background")
  234. icon_url = data.get("rag_pipeline", {}).get("icon_url")
  235. workflow = data.get("workflow", {})
  236. graph = workflow.get("graph", {})
  237. nodes = graph.get("nodes", [])
  238. dataset_id = None
  239. for node in nodes:
  240. if node.get("data", {}).get("type") == "knowledge_index":
  241. knowledge_configuration = node.get("data", {}).get("knowledge_configuration", {})
  242. knowledge_configuration = KnowledgeConfiguration(**knowledge_configuration)
  243. if (
  244. dataset
  245. and pipeline.is_published
  246. and dataset.chunk_structure != knowledge_configuration.chunk_structure
  247. ):
  248. raise ValueError("Chunk structure is not compatible with the published pipeline")
  249. else:
  250. dataset = Dataset(
  251. tenant_id=account.current_tenant_id,
  252. name=name,
  253. description=description,
  254. icon_info={
  255. "type": icon_type,
  256. "icon": icon,
  257. "background": icon_background,
  258. "url": icon_url,
  259. },
  260. indexing_technique=knowledge_configuration.indexing_technique,
  261. created_by=account.id,
  262. retrieval_model=knowledge_configuration.retrieval_model.model_dump(),
  263. runtime_mode="rag_pipeline",
  264. chunk_structure=knowledge_configuration.chunk_structure,
  265. )
  266. if knowledge_configuration.indexing_technique == "high_quality":
  267. dataset_collection_binding = (
  268. db.session.query(DatasetCollectionBinding)
  269. .filter(
  270. DatasetCollectionBinding.provider_name
  271. == knowledge_configuration.embedding_model_provider,
  272. DatasetCollectionBinding.model_name == knowledge_configuration.embedding_model,
  273. DatasetCollectionBinding.type == "dataset",
  274. )
  275. .order_by(DatasetCollectionBinding.created_at)
  276. .first()
  277. )
  278. if not dataset_collection_binding:
  279. dataset_collection_binding = DatasetCollectionBinding(
  280. provider_name=knowledge_configuration.embedding_model_provider,
  281. model_name=knowledge_configuration.embedding_model,
  282. collection_name=Dataset.gen_collection_name_by_id(str(uuid.uuid4())),
  283. type="dataset",
  284. )
  285. db.session.add(dataset_collection_binding)
  286. db.session.commit()
  287. dataset_collection_binding_id = dataset_collection_binding.id
  288. dataset.collection_binding_id = dataset_collection_binding_id
  289. dataset.embedding_model = knowledge_configuration.embedding_model
  290. dataset.embedding_model_provider = knowledge_configuration.embedding_model_provider
  291. elif knowledge_configuration.indexing_technique == "economy":
  292. dataset.keyword_number = knowledge_configuration.keyword_number
  293. dataset.pipeline_id = pipeline.id
  294. self._session.add(dataset)
  295. self._session.commit()
  296. dataset_id = dataset.id
  297. if not dataset_id:
  298. raise ValueError("DSL is not valid, please check the Knowledge Index node.")
  299. return RagPipelineImportInfo(
  300. id=import_id,
  301. status=status,
  302. pipeline_id=pipeline.id,
  303. dataset_id=dataset_id,
  304. imported_dsl_version=imported_version,
  305. )
  306. except yaml.YAMLError as e:
  307. return RagPipelineImportInfo(
  308. id=import_id,
  309. status=ImportStatus.FAILED,
  310. error=f"Invalid YAML format: {str(e)}",
  311. )
  312. except Exception as e:
  313. logger.exception("Failed to import app")
  314. return RagPipelineImportInfo(
  315. id=import_id,
  316. status=ImportStatus.FAILED,
  317. error=str(e),
  318. )
  319. def confirm_import(self, *, import_id: str, account: Account) -> RagPipelineImportInfo:
  320. """
  321. Confirm an import that requires confirmation
  322. """
  323. redis_key = f"{IMPORT_INFO_REDIS_KEY_PREFIX}{import_id}"
  324. pending_data = redis_client.get(redis_key)
  325. if not pending_data:
  326. return RagPipelineImportInfo(
  327. id=import_id,
  328. status=ImportStatus.FAILED,
  329. error="Import information expired or does not exist",
  330. )
  331. try:
  332. if not isinstance(pending_data, str | bytes):
  333. return RagPipelineImportInfo(
  334. id=import_id,
  335. status=ImportStatus.FAILED,
  336. error="Invalid import information",
  337. )
  338. pending_data = RagPipelinePendingData.model_validate_json(pending_data)
  339. data = yaml.safe_load(pending_data.yaml_content)
  340. pipeline = None
  341. if pending_data.pipeline_id:
  342. stmt = select(Pipeline).where(
  343. Pipeline.id == pending_data.pipeline_id,
  344. Pipeline.tenant_id == account.current_tenant_id,
  345. )
  346. pipeline = self._session.scalar(stmt)
  347. # Create or update app
  348. pipeline = self._create_or_update_pipeline(
  349. pipeline=pipeline,
  350. data=data,
  351. account=account,
  352. )
  353. # create dataset
  354. name = pipeline.name
  355. description = pipeline.description
  356. icon_type = data.get("rag_pipeline", {}).get("icon_type")
  357. icon = data.get("rag_pipeline", {}).get("icon")
  358. icon_background = data.get("rag_pipeline", {}).get("icon_background")
  359. icon_url = data.get("rag_pipeline", {}).get("icon_url")
  360. workflow = data.get("workflow", {})
  361. graph = workflow.get("graph", {})
  362. nodes = graph.get("nodes", [])
  363. dataset_id = None
  364. for node in nodes:
  365. if node.get("data", {}).get("type") == "knowledge_index":
  366. knowledge_configuration = node.get("data", {}).get("knowledge_configuration", {})
  367. knowledge_configuration = KnowledgeConfiguration(**knowledge_configuration)
  368. if not dataset:
  369. dataset = Dataset(
  370. tenant_id=account.current_tenant_id,
  371. name=name,
  372. description=description,
  373. icon_info={
  374. "type": icon_type,
  375. "icon": icon,
  376. "background": icon_background,
  377. "url": icon_url,
  378. },
  379. indexing_technique=knowledge_configuration.indexing_technique,
  380. created_by=account.id,
  381. retrieval_model=knowledge_configuration.retrieval_model.model_dump(),
  382. runtime_mode="rag_pipeline",
  383. chunk_structure=knowledge_configuration.chunk_structure,
  384. )
  385. else:
  386. dataset.indexing_technique = knowledge_configuration.indexing_technique
  387. dataset.retrieval_model = knowledge_configuration.retrieval_model.model_dump()
  388. dataset.runtime_mode = "rag_pipeline"
  389. dataset.chunk_structure = knowledge_configuration.chunk_structure
  390. if knowledge_configuration.indexing_technique == "high_quality":
  391. dataset_collection_binding = (
  392. db.session.query(DatasetCollectionBinding)
  393. .filter(
  394. DatasetCollectionBinding.provider_name
  395. == knowledge_configuration.embedding_model_provider,
  396. DatasetCollectionBinding.model_name == knowledge_configuration.embedding_model,
  397. DatasetCollectionBinding.type == "dataset",
  398. )
  399. .order_by(DatasetCollectionBinding.created_at)
  400. .first()
  401. )
  402. if not dataset_collection_binding:
  403. dataset_collection_binding = DatasetCollectionBinding(
  404. provider_name=knowledge_configuration.embedding_model_provider,
  405. model_name=knowledge_configuration.embedding_model,
  406. collection_name=Dataset.gen_collection_name_by_id(str(uuid.uuid4())),
  407. type="dataset",
  408. )
  409. db.session.add(dataset_collection_binding)
  410. db.session.commit()
  411. dataset_collection_binding_id = dataset_collection_binding.id
  412. dataset.collection_binding_id = dataset_collection_binding_id
  413. dataset.embedding_model = knowledge_configuration.embedding_model
  414. dataset.embedding_model_provider = knowledge_configuration.embedding_model_provider
  415. elif knowledge_configuration.indexing_technique == "economy":
  416. dataset.keyword_number = knowledge_configuration.keyword_number
  417. dataset.pipeline_id = pipeline.id
  418. self._session.add(dataset)
  419. self._session.commit()
  420. dataset_id = dataset.id
  421. if not dataset_id:
  422. raise ValueError("DSL is not valid, please check the Knowledge Index node.")
  423. # Delete import info from Redis
  424. redis_client.delete(redis_key)
  425. return RagPipelineImportInfo(
  426. id=import_id,
  427. status=ImportStatus.COMPLETED,
  428. pipeline_id=pipeline.id,
  429. dataset_id=dataset_id,
  430. current_dsl_version=CURRENT_DSL_VERSION,
  431. imported_dsl_version=data.get("version", "0.1.0"),
  432. )
  433. except Exception as e:
  434. logger.exception("Error confirming import")
  435. return RagPipelineImportInfo(
  436. id=import_id,
  437. status=ImportStatus.FAILED,
  438. error=str(e),
  439. )
  440. def check_dependencies(
  441. self,
  442. *,
  443. pipeline: Pipeline,
  444. ) -> CheckDependenciesResult:
  445. """Check dependencies"""
  446. # Get dependencies from Redis
  447. redis_key = f"{CHECK_DEPENDENCIES_REDIS_KEY_PREFIX}{pipeline.id}"
  448. dependencies = redis_client.get(redis_key)
  449. if not dependencies:
  450. return CheckDependenciesResult()
  451. # Extract dependencies
  452. dependencies = CheckDependenciesPendingData.model_validate_json(dependencies)
  453. # Get leaked dependencies
  454. leaked_dependencies = DependenciesAnalysisService.get_leaked_dependencies(
  455. tenant_id=pipeline.tenant_id, dependencies=dependencies.dependencies
  456. )
  457. return CheckDependenciesResult(
  458. leaked_dependencies=leaked_dependencies,
  459. )
  460. def _create_or_update_pipeline(
  461. self,
  462. *,
  463. pipeline: Optional[Pipeline],
  464. data: dict,
  465. account: Account,
  466. dependencies: Optional[list[PluginDependency]] = None,
  467. ) -> Pipeline:
  468. """Create a new app or update an existing one."""
  469. pipeline_data = data.get("rag_pipeline", {})
  470. # Set icon type
  471. icon_type_value = pipeline_data.get("icon_type")
  472. if icon_type_value in ["emoji", "link"]:
  473. icon_type = icon_type_value
  474. else:
  475. icon_type = "emoji"
  476. icon = str(pipeline_data.get("icon", ""))
  477. # Initialize pipeline based on mode
  478. workflow_data = data.get("workflow")
  479. if not workflow_data or not isinstance(workflow_data, dict):
  480. raise ValueError("Missing workflow data for rag pipeline")
  481. environment_variables_list = workflow_data.get("environment_variables", [])
  482. environment_variables = [
  483. variable_factory.build_environment_variable_from_mapping(obj) for obj in environment_variables_list
  484. ]
  485. conversation_variables_list = workflow_data.get("conversation_variables", [])
  486. conversation_variables = [
  487. variable_factory.build_conversation_variable_from_mapping(obj) for obj in conversation_variables_list
  488. ]
  489. rag_pipeline_variables_list = workflow_data.get("rag_pipeline_variables", [])
  490. graph = workflow_data.get("graph", {})
  491. for node in graph.get("nodes", []):
  492. if node.get("data", {}).get("type", "") == NodeType.KNOWLEDGE_RETRIEVAL.value:
  493. dataset_ids = node["data"].get("dataset_ids", [])
  494. node["data"]["dataset_ids"] = [
  495. decrypted_id
  496. for dataset_id in dataset_ids
  497. if (
  498. decrypted_id := self.decrypt_dataset_id(
  499. encrypted_data=dataset_id,
  500. tenant_id=account.current_tenant_id,
  501. )
  502. )
  503. ]
  504. if pipeline:
  505. # Update existing pipeline
  506. pipeline.name = pipeline_data.get("name", pipeline.name)
  507. pipeline.description = pipeline_data.get("description", pipeline.description)
  508. pipeline.updated_by = account.id
  509. else:
  510. if account.current_tenant_id is None:
  511. raise ValueError("Current tenant is not set")
  512. # Create new app
  513. pipeline = Pipeline()
  514. pipeline.id = str(uuid4())
  515. pipeline.tenant_id = account.current_tenant_id
  516. pipeline.name = pipeline_data.get("name", "")
  517. pipeline.description = pipeline_data.get("description", "")
  518. pipeline.created_by = account.id
  519. pipeline.updated_by = account.id
  520. self._session.add(pipeline)
  521. self._session.commit()
  522. # save dependencies
  523. if dependencies:
  524. redis_client.setex(
  525. f"{CHECK_DEPENDENCIES_REDIS_KEY_PREFIX}{pipeline.id}",
  526. IMPORT_INFO_REDIS_EXPIRY,
  527. CheckDependenciesPendingData(pipeline_id=pipeline.id, dependencies=dependencies).model_dump_json(),
  528. )
  529. workflow = (
  530. db.session.query(Workflow)
  531. .filter(
  532. Workflow.tenant_id == pipeline.tenant_id,
  533. Workflow.app_id == pipeline.id,
  534. Workflow.version == "draft",
  535. )
  536. .first()
  537. )
  538. # create draft workflow if not found
  539. if not workflow:
  540. workflow = Workflow(
  541. tenant_id=pipeline.tenant_id,
  542. app_id=pipeline.id,
  543. features="{}",
  544. type=WorkflowType.RAG_PIPELINE.value,
  545. version="draft",
  546. graph=json.dumps(graph),
  547. created_by=account.id,
  548. environment_variables=environment_variables,
  549. conversation_variables=conversation_variables,
  550. rag_pipeline_variables=rag_pipeline_variables_list,
  551. )
  552. db.session.add(workflow)
  553. db.session.flush()
  554. pipeline.workflow_id = workflow.id
  555. else:
  556. workflow.graph = json.dumps(graph)
  557. workflow.updated_by = account.id
  558. workflow.updated_at = datetime.now(UTC).replace(tzinfo=None)
  559. workflow.environment_variables = environment_variables
  560. workflow.conversation_variables = conversation_variables
  561. workflow.rag_pipeline_variables = rag_pipeline_variables_list
  562. # commit db session changes
  563. db.session.commit()
  564. return pipeline
  565. @classmethod
  566. def export_rag_pipeline_dsl(cls, pipeline: Pipeline, include_secret: bool = False) -> str:
  567. """
  568. Export pipeline
  569. :param pipeline: Pipeline instance
  570. :param include_secret: Whether include secret variable
  571. :return:
  572. """
  573. dataset = pipeline.dataset
  574. if not dataset:
  575. raise ValueError("Missing dataset for rag pipeline")
  576. icon_info = dataset.icon_info
  577. export_data = {
  578. "version": CURRENT_DSL_VERSION,
  579. "kind": "rag_pipeline",
  580. "pipeline": {
  581. "name": pipeline.name,
  582. "icon": icon_info.get("icon", "📙") if icon_info else "📙",
  583. "icon_type": icon_info.get("icon_type", "emoji") if icon_info else "emoji",
  584. "icon_background": icon_info.get("icon_background", "#FFEAD5") if icon_info else "#FFEAD5",
  585. "description": pipeline.description,
  586. },
  587. }
  588. cls._append_workflow_export_data(export_data=export_data, pipeline=pipeline, include_secret=include_secret)
  589. return yaml.dump(export_data, allow_unicode=True) # type: ignore
  590. @classmethod
  591. def _append_workflow_export_data(cls, *, export_data: dict, pipeline: Pipeline, include_secret: bool) -> None:
  592. """
  593. Append workflow export data
  594. :param export_data: export data
  595. :param pipeline: Pipeline instance
  596. """
  597. workflow = (
  598. db.session.query(Workflow)
  599. .filter(
  600. Workflow.tenant_id == pipeline.tenant_id,
  601. Workflow.app_id == pipeline.id,
  602. Workflow.version == "draft",
  603. )
  604. .first()
  605. )
  606. if not workflow:
  607. raise ValueError("Missing draft workflow configuration, please check.")
  608. workflow_dict = workflow.to_dict(include_secret=include_secret)
  609. for node in workflow_dict.get("graph", {}).get("nodes", []):
  610. if node.get("data", {}).get("type", "") == NodeType.KNOWLEDGE_RETRIEVAL.value:
  611. dataset_ids = node["data"].get("dataset_ids", [])
  612. node["data"]["dataset_ids"] = [
  613. cls.encrypt_dataset_id(dataset_id=dataset_id, tenant_id=pipeline.tenant_id)
  614. for dataset_id in dataset_ids
  615. ]
  616. export_data["workflow"] = workflow_dict
  617. dependencies = cls._extract_dependencies_from_workflow(workflow)
  618. export_data["dependencies"] = [
  619. jsonable_encoder(d.model_dump())
  620. for d in DependenciesAnalysisService.generate_dependencies(
  621. tenant_id=pipeline.tenant_id, dependencies=dependencies
  622. )
  623. ]
  624. @classmethod
  625. def _extract_dependencies_from_workflow(cls, workflow: Workflow) -> list[str]:
  626. """
  627. Extract dependencies from workflow
  628. :param workflow: Workflow instance
  629. :return: dependencies list format like ["langgenius/google"]
  630. """
  631. graph = workflow.graph_dict
  632. dependencies = cls._extract_dependencies_from_workflow_graph(graph)
  633. return dependencies
  634. @classmethod
  635. def _extract_dependencies_from_workflow_graph(cls, graph: Mapping) -> list[str]:
  636. """
  637. Extract dependencies from workflow graph
  638. :param graph: Workflow graph
  639. :return: dependencies list format like ["langgenius/google"]
  640. """
  641. dependencies = []
  642. for node in graph.get("nodes", []):
  643. try:
  644. typ = node.get("data", {}).get("type")
  645. match typ:
  646. case NodeType.TOOL.value:
  647. tool_entity = ToolNodeData(**node["data"])
  648. dependencies.append(
  649. DependenciesAnalysisService.analyze_tool_dependency(tool_entity.provider_id),
  650. )
  651. case NodeType.LLM.value:
  652. llm_entity = LLMNodeData(**node["data"])
  653. dependencies.append(
  654. DependenciesAnalysisService.analyze_model_provider_dependency(llm_entity.model.provider),
  655. )
  656. case NodeType.QUESTION_CLASSIFIER.value:
  657. question_classifier_entity = QuestionClassifierNodeData(**node["data"])
  658. dependencies.append(
  659. DependenciesAnalysisService.analyze_model_provider_dependency(
  660. question_classifier_entity.model.provider
  661. ),
  662. )
  663. case NodeType.PARAMETER_EXTRACTOR.value:
  664. parameter_extractor_entity = ParameterExtractorNodeData(**node["data"])
  665. dependencies.append(
  666. DependenciesAnalysisService.analyze_model_provider_dependency(
  667. parameter_extractor_entity.model.provider
  668. ),
  669. )
  670. case NodeType.KNOWLEDGE_RETRIEVAL.value:
  671. knowledge_retrieval_entity = KnowledgeRetrievalNodeData(**node["data"])
  672. if knowledge_retrieval_entity.retrieval_mode == "multiple":
  673. if knowledge_retrieval_entity.multiple_retrieval_config:
  674. if (
  675. knowledge_retrieval_entity.multiple_retrieval_config.reranking_mode
  676. == "reranking_model"
  677. ):
  678. if knowledge_retrieval_entity.multiple_retrieval_config.reranking_model:
  679. dependencies.append(
  680. DependenciesAnalysisService.analyze_model_provider_dependency(
  681. knowledge_retrieval_entity.multiple_retrieval_config.reranking_model.provider
  682. ),
  683. )
  684. elif (
  685. knowledge_retrieval_entity.multiple_retrieval_config.reranking_mode
  686. == "weighted_score"
  687. ):
  688. if knowledge_retrieval_entity.multiple_retrieval_config.weights:
  689. vector_setting = (
  690. knowledge_retrieval_entity.multiple_retrieval_config.weights.vector_setting
  691. )
  692. dependencies.append(
  693. DependenciesAnalysisService.analyze_model_provider_dependency(
  694. vector_setting.embedding_provider_name
  695. ),
  696. )
  697. elif knowledge_retrieval_entity.retrieval_mode == "single":
  698. model_config = knowledge_retrieval_entity.single_retrieval_config
  699. if model_config:
  700. dependencies.append(
  701. DependenciesAnalysisService.analyze_model_provider_dependency(
  702. model_config.model.provider
  703. ),
  704. )
  705. case _:
  706. # TODO: Handle default case or unknown node types
  707. pass
  708. except Exception as e:
  709. logger.exception("Error extracting node dependency", exc_info=e)
  710. return dependencies
  711. @classmethod
  712. def _extract_dependencies_from_model_config(cls, model_config: Mapping) -> list[str]:
  713. """
  714. Extract dependencies from model config
  715. :param model_config: model config dict
  716. :return: dependencies list format like ["langgenius/google"]
  717. """
  718. dependencies = []
  719. try:
  720. # completion model
  721. model_dict = model_config.get("model", {})
  722. if model_dict:
  723. dependencies.append(
  724. DependenciesAnalysisService.analyze_model_provider_dependency(model_dict.get("provider", ""))
  725. )
  726. # reranking model
  727. dataset_configs = model_config.get("dataset_configs", {})
  728. if dataset_configs:
  729. for dataset_config in dataset_configs.get("datasets", {}).get("datasets", []):
  730. if dataset_config.get("reranking_model"):
  731. dependencies.append(
  732. DependenciesAnalysisService.analyze_model_provider_dependency(
  733. dataset_config.get("reranking_model", {})
  734. .get("reranking_provider_name", {})
  735. .get("provider")
  736. )
  737. )
  738. # tools
  739. agent_configs = model_config.get("agent_mode", {})
  740. if agent_configs:
  741. for agent_config in agent_configs.get("tools", []):
  742. dependencies.append(
  743. DependenciesAnalysisService.analyze_tool_dependency(agent_config.get("provider_id"))
  744. )
  745. except Exception as e:
  746. logger.exception("Error extracting model config dependency", exc_info=e)
  747. return dependencies
  748. @classmethod
  749. def get_leaked_dependencies(cls, tenant_id: str, dsl_dependencies: list[dict]) -> list[PluginDependency]:
  750. """
  751. Returns the leaked dependencies in current workspace
  752. """
  753. dependencies = [PluginDependency(**dep) for dep in dsl_dependencies]
  754. if not dependencies:
  755. return []
  756. return DependenciesAnalysisService.get_leaked_dependencies(tenant_id=tenant_id, dependencies=dependencies)
  757. @staticmethod
  758. def _generate_aes_key(tenant_id: str) -> bytes:
  759. """Generate AES key based on tenant_id"""
  760. return hashlib.sha256(tenant_id.encode()).digest()
  761. @classmethod
  762. def encrypt_dataset_id(cls, dataset_id: str, tenant_id: str) -> str:
  763. """Encrypt dataset_id using AES-CBC mode"""
  764. key = cls._generate_aes_key(tenant_id)
  765. iv = key[:16]
  766. cipher = AES.new(key, AES.MODE_CBC, iv)
  767. ct_bytes = cipher.encrypt(pad(dataset_id.encode(), AES.block_size))
  768. return base64.b64encode(ct_bytes).decode()
  769. @classmethod
  770. def decrypt_dataset_id(cls, encrypted_data: str, tenant_id: str) -> str | None:
  771. """AES decryption"""
  772. try:
  773. key = cls._generate_aes_key(tenant_id)
  774. iv = key[:16]
  775. cipher = AES.new(key, AES.MODE_CBC, iv)
  776. pt = unpad(cipher.decrypt(base64.b64decode(encrypted_data)), AES.block_size)
  777. return pt.decode()
  778. except Exception:
  779. return None
  780. @staticmethod
  781. def create_rag_pipeline_dataset(
  782. tenant_id: str,
  783. rag_pipeline_dataset_create_entity: RagPipelineDatasetCreateEntity,
  784. ):
  785. # check if dataset name already exists
  786. if (
  787. db.session.query(Dataset)
  788. .filter_by(name=rag_pipeline_dataset_create_entity.name, tenant_id=tenant_id)
  789. .first()
  790. ):
  791. raise ValueError(f"Dataset with name {rag_pipeline_dataset_create_entity.name} already exists.")
  792. with Session(db.engine) as session:
  793. rag_pipeline_dsl_service = RagPipelineDslService(session)
  794. account = cast(Account, current_user)
  795. rag_pipeline_import_info: RagPipelineImportInfo = rag_pipeline_dsl_service.import_rag_pipeline(
  796. account=account,
  797. import_mode=ImportMode.YAML_CONTENT.value,
  798. yaml_content=rag_pipeline_dataset_create_entity.yaml_content,
  799. dataset=None,
  800. )
  801. return {
  802. "id": rag_pipeline_import_info.id,
  803. "dataset_id": rag_pipeline_import_info.dataset_id,
  804. "pipeline_id": rag_pipeline_import_info.pipeline_id,
  805. "status": rag_pipeline_import_info.status,
  806. "imported_dsl_version": rag_pipeline_import_info.imported_dsl_version,
  807. "current_dsl_version": rag_pipeline_import_info.current_dsl_version,
  808. "error": rag_pipeline_import_info.error,
  809. }