Nelze vybrat více než 25 témat Téma musí začínat písmenem nebo číslem, může obsahovat pomlčky („-“) a může být dlouhé až 35 znaků.
-LAN- 9414143b5f
chore(api/libs): Apply ruff format. (#7301)
před 1 rokem
..
configs feat: support pinning, including, and excluding for Model Providers and Tools (#7283) před 1 rokem
constants chore(api): Introduce Ruff Formatter. (#7291) před 1 rokem
contexts chore(api): Introduce Ruff Formatter. (#7291) před 1 rokem
controllers add secondary sort_key when using `order_by` and `paginate` at the same time (#7225) před 1 rokem
core fix(api/core/app/segments/segments.py): Fix file to markdown. (#7293) před 1 rokem
docker fix: ensure db migration in docker entry script running with `upgrade-db` command for proper locking (#6946) před 1 rokem
events chore(api): Introduce Ruff Formatter. (#7291) před 1 rokem
extensions chore(api): Introduce Ruff Formatter. (#7291) před 1 rokem
fields chore(api): Introduce Ruff Formatter. (#7291) před 1 rokem
libs chore(api/libs): Apply ruff format. (#7301) před 1 rokem
migrations feat(api/workflow): Add `Conversation.dialogue_count` (#7275) před 1 rokem
models feat(api/workflow): Add `Conversation.dialogue_count` (#7275) před 1 rokem
schedule chore(api): Introduce Ruff Formatter. (#7291) před 1 rokem
services fix(api/services/app_dsl_service.py): Add conversation variables. (#7304) před 1 rokem
tasks Feat: conversation variable & variable assigner node (#7222) před 1 rokem
templates feat: implement forgot password feature (#5534) před 1 rokem
tests feat: support pinning, including, and excluding for Model Providers and Tools (#7283) před 1 rokem
.dockerignore build: support Poetry for depencencies tool in api's Dockerfile (#5105) před 1 rokem
.env.example feat: support pinning, including, and excluding for Model Providers and Tools (#7283) před 1 rokem
Dockerfile add nltk punkt resource (#7063) před 1 rokem
README.md Chores: add missing profile for middleware docker compose cmd and fix ssrf-proxy doc link (#6372) před 1 rokem
app.py chore(api): Introduce Ruff Formatter. (#7291) před 1 rokem
commands.py chore(api): Introduce Ruff Formatter. (#7291) před 1 rokem
poetry.lock feat: support elasticsearch vector database (#3558) před 1 rokem
poetry.toml build: initial support for poetry build tool (#4513) před 1 rokem
pyproject.toml chore(api/libs): Apply ruff format. (#7301) před 1 rokem

README.md

Dify Backend API

Usage

[!IMPORTANT] In the v0.6.12 release, we deprecated pip as the package management tool for Dify API Backend service and replaced it with poetry.

  1. Start the docker-compose stack

The backend require some middleware, including PostgreSQL, Redis, and Weaviate, which can be started together using docker-compose.

   cd ../docker
   cp middleware.env.example middleware.env
   # change the profile to other vector database if you are not using weaviate
   docker compose -f docker-compose.middleware.yaml --profile weaviate -p dify up -d
   cd ../api
  1. Copy .env.example to .env
  2. Generate a SECRET_KEY in the .env file.
   sed -i "/^SECRET_KEY=/c\SECRET_KEY=$(openssl rand -base64 42)" .env
   secret_key=$(openssl rand -base64 42)
   sed -i '' "/^SECRET_KEY=/c\\
   SECRET_KEY=${secret_key}" .env
  1. Create environment.

Dify API service uses Poetry to manage dependencies. You can execute poetry shell to activate the environment.

  1. Install dependencies
   poetry env use 3.10
   poetry install

In case of contributors missing to update dependencies for pyproject.toml, you can perform the following shell instead.

   poetry shell                                               # activate current environment
   poetry add $(cat requirements.txt)           # install dependencies of production and update pyproject.toml
   poetry add $(cat requirements-dev.txt) --group dev    # install dependencies of development and update pyproject.toml
  1. Run migrate

Before the first launch, migrate the database to the latest version.

   poetry run python -m flask db upgrade
  1. Start backend
   poetry run python -m flask run --host 0.0.0.0 --port=5001 --debug
  1. Start Dify web service.
  2. Setup your application by visiting http://localhost:3000
  3. If you need to debug local async processing, please start the worker service.
   poetry run python -m celery -A app.celery worker -P gevent -c 1 --loglevel INFO -Q dataset,generation,mail,ops_trace,app_deletion

The started celery app handles the async tasks, e.g. dataset importing and documents indexing.

Testing

  1. Install dependencies for both the backend and the test environment
   poetry install --with dev
  1. Run the tests locally with mocked system environment variables in tool.pytest_env section in pyproject.toml
   cd ../
   poetry run -C api bash dev/pytest/pytest_all_tests.sh