You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

rag_pipeline_dsl_service.py 42KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950
  1. import base64
  2. import hashlib
  3. import json
  4. import logging
  5. import uuid
  6. from collections.abc import Mapping
  7. from datetime import UTC, datetime
  8. from enum import StrEnum
  9. from typing import Optional, cast
  10. from urllib.parse import urlparse
  11. from uuid import uuid4
  12. import yaml # type: ignore
  13. from Crypto.Cipher import AES
  14. from Crypto.Util.Padding import pad, unpad
  15. from flask_login import current_user
  16. from packaging import version
  17. from pydantic import BaseModel, Field
  18. from sqlalchemy import select
  19. from sqlalchemy.orm import Session
  20. from core.helper import ssrf_proxy
  21. from core.helper.name_generator import generate_incremental_name
  22. from core.model_runtime.utils.encoders import jsonable_encoder
  23. from core.plugin.entities.plugin import PluginDependency
  24. from core.workflow.enums import NodeType
  25. from core.workflow.nodes.datasource.entities import DatasourceNodeData
  26. from core.workflow.nodes.knowledge_retrieval.entities import KnowledgeRetrievalNodeData
  27. from core.workflow.nodes.llm.entities import LLMNodeData
  28. from core.workflow.nodes.parameter_extractor.entities import ParameterExtractorNodeData
  29. from core.workflow.nodes.question_classifier.entities import QuestionClassifierNodeData
  30. from core.workflow.nodes.tool.entities import ToolNodeData
  31. from extensions.ext_database import db
  32. from extensions.ext_redis import redis_client
  33. from factories import variable_factory
  34. from models import Account
  35. from models.dataset import Dataset, DatasetCollectionBinding, Pipeline
  36. from models.workflow import Workflow, WorkflowType
  37. from services.entities.knowledge_entities.rag_pipeline_entities import (
  38. IconInfo,
  39. KnowledgeConfiguration,
  40. RagPipelineDatasetCreateEntity,
  41. )
  42. from services.plugin.dependencies_analysis import DependenciesAnalysisService
  43. logger = logging.getLogger(__name__)
  44. IMPORT_INFO_REDIS_KEY_PREFIX = "app_import_info:"
  45. CHECK_DEPENDENCIES_REDIS_KEY_PREFIX = "app_check_dependencies:"
  46. IMPORT_INFO_REDIS_EXPIRY = 10 * 60 # 10 minutes
  47. DSL_MAX_SIZE = 10 * 1024 * 1024 # 10MB
  48. CURRENT_DSL_VERSION = "0.1.0"
  49. class ImportMode(StrEnum):
  50. YAML_CONTENT = "yaml-content"
  51. YAML_URL = "yaml-url"
  52. class ImportStatus(StrEnum):
  53. COMPLETED = "completed"
  54. COMPLETED_WITH_WARNINGS = "completed-with-warnings"
  55. PENDING = "pending"
  56. FAILED = "failed"
  57. class RagPipelineImportInfo(BaseModel):
  58. id: str
  59. status: ImportStatus
  60. pipeline_id: Optional[str] = None
  61. current_dsl_version: str = CURRENT_DSL_VERSION
  62. imported_dsl_version: str = ""
  63. error: str = ""
  64. dataset_id: Optional[str] = None
  65. class CheckDependenciesResult(BaseModel):
  66. leaked_dependencies: list[PluginDependency] = Field(default_factory=list)
  67. def _check_version_compatibility(imported_version: str) -> ImportStatus:
  68. """Determine import status based on version comparison"""
  69. try:
  70. current_ver = version.parse(CURRENT_DSL_VERSION)
  71. imported_ver = version.parse(imported_version)
  72. except version.InvalidVersion:
  73. return ImportStatus.FAILED
  74. # If imported version is newer than current, always return PENDING
  75. if imported_ver > current_ver:
  76. return ImportStatus.PENDING
  77. # If imported version is older than current's major, return PENDING
  78. if imported_ver.major < current_ver.major:
  79. return ImportStatus.PENDING
  80. # If imported version is older than current's minor, return COMPLETED_WITH_WARNINGS
  81. if imported_ver.minor < current_ver.minor:
  82. return ImportStatus.COMPLETED_WITH_WARNINGS
  83. # If imported version equals or is older than current's micro, return COMPLETED
  84. return ImportStatus.COMPLETED
  85. class RagPipelinePendingData(BaseModel):
  86. import_mode: str
  87. yaml_content: str
  88. pipeline_id: str | None
  89. class CheckDependenciesPendingData(BaseModel):
  90. dependencies: list[PluginDependency]
  91. pipeline_id: str | None
  92. class RagPipelineDslService:
  93. def __init__(self, session: Session):
  94. self._session = session
  95. def import_rag_pipeline(
  96. self,
  97. *,
  98. account: Account,
  99. import_mode: str,
  100. yaml_content: Optional[str] = None,
  101. yaml_url: Optional[str] = None,
  102. pipeline_id: Optional[str] = None,
  103. dataset: Optional[Dataset] = None,
  104. dataset_name: Optional[str] = None,
  105. icon_info: Optional[IconInfo] = None,
  106. ) -> RagPipelineImportInfo:
  107. """Import an app from YAML content or URL."""
  108. import_id = str(uuid.uuid4())
  109. # Validate import mode
  110. try:
  111. mode = ImportMode(import_mode)
  112. except ValueError:
  113. raise ValueError(f"Invalid import_mode: {import_mode}")
  114. # Get YAML content
  115. content: str = ""
  116. if mode == ImportMode.YAML_URL:
  117. if not yaml_url:
  118. return RagPipelineImportInfo(
  119. id=import_id,
  120. status=ImportStatus.FAILED,
  121. error="yaml_url is required when import_mode is yaml-url",
  122. )
  123. try:
  124. parsed_url = urlparse(yaml_url)
  125. if (
  126. parsed_url.scheme == "https"
  127. and parsed_url.netloc == "github.com"
  128. and parsed_url.path.endswith((".yml", ".yaml"))
  129. ):
  130. yaml_url = yaml_url.replace("https://github.com", "https://raw.githubusercontent.com")
  131. yaml_url = yaml_url.replace("/blob/", "/")
  132. response = ssrf_proxy.get(yaml_url.strip(), follow_redirects=True, timeout=(10, 10))
  133. response.raise_for_status()
  134. content = response.content.decode()
  135. if len(content) > DSL_MAX_SIZE:
  136. return RagPipelineImportInfo(
  137. id=import_id,
  138. status=ImportStatus.FAILED,
  139. error="File size exceeds the limit of 10MB",
  140. )
  141. if not content:
  142. return RagPipelineImportInfo(
  143. id=import_id,
  144. status=ImportStatus.FAILED,
  145. error="Empty content from url",
  146. )
  147. except Exception as e:
  148. return RagPipelineImportInfo(
  149. id=import_id,
  150. status=ImportStatus.FAILED,
  151. error=f"Error fetching YAML from URL: {str(e)}",
  152. )
  153. elif mode == ImportMode.YAML_CONTENT:
  154. if not yaml_content:
  155. return RagPipelineImportInfo(
  156. id=import_id,
  157. status=ImportStatus.FAILED,
  158. error="yaml_content is required when import_mode is yaml-content",
  159. )
  160. content = yaml_content
  161. # Process YAML content
  162. try:
  163. # Parse YAML to validate format
  164. data = yaml.safe_load(content)
  165. if not isinstance(data, dict):
  166. return RagPipelineImportInfo(
  167. id=import_id,
  168. status=ImportStatus.FAILED,
  169. error="Invalid YAML format: content must be a mapping",
  170. )
  171. # Validate and fix DSL version
  172. if not data.get("version"):
  173. data["version"] = "0.1.0"
  174. if not data.get("kind") or data.get("kind") != "rag_pipeline":
  175. data["kind"] = "rag_pipeline"
  176. imported_version = data.get("version", "0.1.0")
  177. # check if imported_version is a float-like string
  178. if not isinstance(imported_version, str):
  179. raise ValueError(f"Invalid version type, expected str, got {type(imported_version)}")
  180. status = _check_version_compatibility(imported_version)
  181. # Extract app data
  182. pipeline_data = data.get("rag_pipeline")
  183. if not pipeline_data:
  184. return RagPipelineImportInfo(
  185. id=import_id,
  186. status=ImportStatus.FAILED,
  187. error="Missing rag_pipeline data in YAML content",
  188. )
  189. # If app_id is provided, check if it exists
  190. pipeline = None
  191. if pipeline_id:
  192. stmt = select(Pipeline).where(
  193. Pipeline.id == pipeline_id,
  194. Pipeline.tenant_id == account.current_tenant_id,
  195. )
  196. pipeline = self._session.scalar(stmt)
  197. if not pipeline:
  198. return RagPipelineImportInfo(
  199. id=import_id,
  200. status=ImportStatus.FAILED,
  201. error="Pipeline not found",
  202. )
  203. dataset = pipeline.dataset
  204. if dataset:
  205. self._session.merge(dataset)
  206. dataset_name = dataset.name
  207. # If major version mismatch, store import info in Redis
  208. if status == ImportStatus.PENDING:
  209. pending_data = RagPipelinePendingData(
  210. import_mode=import_mode,
  211. yaml_content=content,
  212. pipeline_id=pipeline_id,
  213. )
  214. redis_client.setex(
  215. f"{IMPORT_INFO_REDIS_KEY_PREFIX}{import_id}",
  216. IMPORT_INFO_REDIS_EXPIRY,
  217. pending_data.model_dump_json(),
  218. )
  219. return RagPipelineImportInfo(
  220. id=import_id,
  221. status=status,
  222. pipeline_id=pipeline_id,
  223. imported_dsl_version=imported_version,
  224. )
  225. # Extract dependencies
  226. dependencies = data.get("dependencies", [])
  227. check_dependencies_pending_data = None
  228. if dependencies:
  229. check_dependencies_pending_data = [PluginDependency.model_validate(d) for d in dependencies]
  230. # Create or update pipeline
  231. pipeline = self._create_or_update_pipeline(
  232. pipeline=pipeline,
  233. data=data,
  234. account=account,
  235. dependencies=check_dependencies_pending_data,
  236. )
  237. # create dataset
  238. name = pipeline.name or "Untitled"
  239. description = pipeline.description
  240. if icon_info:
  241. icon_type = icon_info.icon_type
  242. icon = icon_info.icon
  243. icon_background = icon_info.icon_background
  244. icon_url = icon_info.icon_url
  245. else:
  246. icon_type = data.get("rag_pipeline", {}).get("icon_type")
  247. icon = data.get("rag_pipeline", {}).get("icon")
  248. icon_background = data.get("rag_pipeline", {}).get("icon_background")
  249. icon_url = data.get("rag_pipeline", {}).get("icon_url")
  250. workflow = data.get("workflow", {})
  251. graph = workflow.get("graph", {})
  252. nodes = graph.get("nodes", [])
  253. dataset_id = None
  254. for node in nodes:
  255. if node.get("data", {}).get("type") == "knowledge-index":
  256. knowledge_configuration = KnowledgeConfiguration(**node.get("data", {}))
  257. if (
  258. dataset
  259. and pipeline.is_published
  260. and dataset.chunk_structure != knowledge_configuration.chunk_structure
  261. ):
  262. raise ValueError("Chunk structure is not compatible with the published pipeline")
  263. if not dataset:
  264. datasets = db.session.query(Dataset).filter_by(tenant_id=account.current_tenant_id).all()
  265. names = [dataset.name for dataset in datasets]
  266. generate_name = generate_incremental_name(names, name)
  267. dataset = Dataset(
  268. tenant_id=account.current_tenant_id,
  269. name=generate_name,
  270. description=description,
  271. icon_info={
  272. "icon_type": icon_type,
  273. "icon": icon,
  274. "icon_background": icon_background,
  275. "icon_url": icon_url,
  276. },
  277. indexing_technique=knowledge_configuration.indexing_technique,
  278. created_by=account.id,
  279. retrieval_model=knowledge_configuration.retrieval_model.model_dump(),
  280. runtime_mode="rag_pipeline",
  281. chunk_structure=knowledge_configuration.chunk_structure,
  282. )
  283. if knowledge_configuration.indexing_technique == "high_quality":
  284. dataset_collection_binding = (
  285. db.session.query(DatasetCollectionBinding)
  286. .filter(
  287. DatasetCollectionBinding.provider_name
  288. == knowledge_configuration.embedding_model_provider,
  289. DatasetCollectionBinding.model_name == knowledge_configuration.embedding_model,
  290. DatasetCollectionBinding.type == "dataset",
  291. )
  292. .order_by(DatasetCollectionBinding.created_at)
  293. .first()
  294. )
  295. if not dataset_collection_binding:
  296. dataset_collection_binding = DatasetCollectionBinding(
  297. provider_name=knowledge_configuration.embedding_model_provider,
  298. model_name=knowledge_configuration.embedding_model,
  299. collection_name=Dataset.gen_collection_name_by_id(str(uuid.uuid4())),
  300. type="dataset",
  301. )
  302. db.session.add(dataset_collection_binding)
  303. db.session.commit()
  304. dataset_collection_binding_id = dataset_collection_binding.id
  305. dataset.collection_binding_id = dataset_collection_binding_id
  306. dataset.embedding_model = knowledge_configuration.embedding_model
  307. dataset.embedding_model_provider = knowledge_configuration.embedding_model_provider
  308. elif knowledge_configuration.indexing_technique == "economy":
  309. dataset.keyword_number = knowledge_configuration.keyword_number
  310. dataset.pipeline_id = pipeline.id
  311. self._session.add(dataset)
  312. self._session.commit()
  313. dataset_id = dataset.id
  314. if not dataset_id:
  315. raise ValueError("DSL is not valid, please check the Knowledge Index node.")
  316. return RagPipelineImportInfo(
  317. id=import_id,
  318. status=status,
  319. pipeline_id=pipeline.id,
  320. dataset_id=dataset_id,
  321. imported_dsl_version=imported_version,
  322. )
  323. except yaml.YAMLError as e:
  324. return RagPipelineImportInfo(
  325. id=import_id,
  326. status=ImportStatus.FAILED,
  327. error=f"Invalid YAML format: {str(e)}",
  328. )
  329. except Exception as e:
  330. logger.exception("Failed to import app")
  331. return RagPipelineImportInfo(
  332. id=import_id,
  333. status=ImportStatus.FAILED,
  334. error=str(e),
  335. )
  336. def confirm_import(self, *, import_id: str, account: Account) -> RagPipelineImportInfo:
  337. """
  338. Confirm an import that requires confirmation
  339. """
  340. redis_key = f"{IMPORT_INFO_REDIS_KEY_PREFIX}{import_id}"
  341. pending_data = redis_client.get(redis_key)
  342. if not pending_data:
  343. return RagPipelineImportInfo(
  344. id=import_id,
  345. status=ImportStatus.FAILED,
  346. error="Import information expired or does not exist",
  347. )
  348. try:
  349. if not isinstance(pending_data, str | bytes):
  350. return RagPipelineImportInfo(
  351. id=import_id,
  352. status=ImportStatus.FAILED,
  353. error="Invalid import information",
  354. )
  355. pending_data = RagPipelinePendingData.model_validate_json(pending_data)
  356. data = yaml.safe_load(pending_data.yaml_content)
  357. pipeline = None
  358. if pending_data.pipeline_id:
  359. stmt = select(Pipeline).where(
  360. Pipeline.id == pending_data.pipeline_id,
  361. Pipeline.tenant_id == account.current_tenant_id,
  362. )
  363. pipeline = self._session.scalar(stmt)
  364. # Create or update app
  365. pipeline = self._create_or_update_pipeline(
  366. pipeline=pipeline,
  367. data=data,
  368. account=account,
  369. )
  370. # create dataset
  371. name = pipeline.name
  372. description = pipeline.description
  373. icon_type = data.get("rag_pipeline", {}).get("icon_type")
  374. icon = data.get("rag_pipeline", {}).get("icon")
  375. icon_background = data.get("rag_pipeline", {}).get("icon_background")
  376. icon_url = data.get("rag_pipeline", {}).get("icon_url")
  377. workflow = data.get("workflow", {})
  378. graph = workflow.get("graph", {})
  379. nodes = graph.get("nodes", [])
  380. dataset_id = None
  381. for node in nodes:
  382. if node.get("data", {}).get("type") == "knowledge_index":
  383. knowledge_configuration = KnowledgeConfiguration(**node.get("data", {}))
  384. if not dataset:
  385. dataset = Dataset(
  386. tenant_id=account.current_tenant_id,
  387. name=name,
  388. description=description,
  389. icon_info={
  390. "icon_type": icon_type,
  391. "icon": icon,
  392. "icon_background": icon_background,
  393. "icon_url": icon_url,
  394. },
  395. indexing_technique=knowledge_configuration.indexing_technique,
  396. created_by=account.id,
  397. retrieval_model=knowledge_configuration.retrieval_model.model_dump(),
  398. runtime_mode="rag_pipeline",
  399. chunk_structure=knowledge_configuration.chunk_structure,
  400. )
  401. else:
  402. dataset.indexing_technique = knowledge_configuration.indexing_technique
  403. dataset.retrieval_model = knowledge_configuration.retrieval_model.model_dump()
  404. dataset.runtime_mode = "rag_pipeline"
  405. dataset.chunk_structure = knowledge_configuration.chunk_structure
  406. if knowledge_configuration.indexing_technique == "high_quality":
  407. dataset_collection_binding = (
  408. db.session.query(DatasetCollectionBinding)
  409. .filter(
  410. DatasetCollectionBinding.provider_name
  411. == knowledge_configuration.embedding_model_provider,
  412. DatasetCollectionBinding.model_name == knowledge_configuration.embedding_model,
  413. DatasetCollectionBinding.type == "dataset",
  414. )
  415. .order_by(DatasetCollectionBinding.created_at)
  416. .first()
  417. )
  418. if not dataset_collection_binding:
  419. dataset_collection_binding = DatasetCollectionBinding(
  420. provider_name=knowledge_configuration.embedding_model_provider,
  421. model_name=knowledge_configuration.embedding_model,
  422. collection_name=Dataset.gen_collection_name_by_id(str(uuid.uuid4())),
  423. type="dataset",
  424. )
  425. db.session.add(dataset_collection_binding)
  426. db.session.commit()
  427. dataset_collection_binding_id = dataset_collection_binding.id
  428. dataset.collection_binding_id = dataset_collection_binding_id
  429. dataset.embedding_model = knowledge_configuration.embedding_model
  430. dataset.embedding_model_provider = knowledge_configuration.embedding_model_provider
  431. elif knowledge_configuration.indexing_technique == "economy":
  432. dataset.keyword_number = knowledge_configuration.keyword_number
  433. dataset.pipeline_id = pipeline.id
  434. self._session.add(dataset)
  435. self._session.commit()
  436. dataset_id = dataset.id
  437. if not dataset_id:
  438. raise ValueError("DSL is not valid, please check the Knowledge Index node.")
  439. # Delete import info from Redis
  440. redis_client.delete(redis_key)
  441. return RagPipelineImportInfo(
  442. id=import_id,
  443. status=ImportStatus.COMPLETED,
  444. pipeline_id=pipeline.id,
  445. dataset_id=dataset_id,
  446. current_dsl_version=CURRENT_DSL_VERSION,
  447. imported_dsl_version=data.get("version", "0.1.0"),
  448. )
  449. except Exception as e:
  450. logger.exception("Error confirming import")
  451. return RagPipelineImportInfo(
  452. id=import_id,
  453. status=ImportStatus.FAILED,
  454. error=str(e),
  455. )
  456. def check_dependencies(
  457. self,
  458. *,
  459. pipeline: Pipeline,
  460. ) -> CheckDependenciesResult:
  461. """Check dependencies"""
  462. # Get dependencies from Redis
  463. redis_key = f"{CHECK_DEPENDENCIES_REDIS_KEY_PREFIX}{pipeline.id}"
  464. dependencies = redis_client.get(redis_key)
  465. if not dependencies:
  466. return CheckDependenciesResult()
  467. # Extract dependencies
  468. dependencies = CheckDependenciesPendingData.model_validate_json(dependencies)
  469. # Get leaked dependencies
  470. leaked_dependencies = DependenciesAnalysisService.get_leaked_dependencies(
  471. tenant_id=pipeline.tenant_id, dependencies=dependencies.dependencies
  472. )
  473. return CheckDependenciesResult(
  474. leaked_dependencies=leaked_dependencies,
  475. )
  476. def _create_or_update_pipeline(
  477. self,
  478. *,
  479. pipeline: Optional[Pipeline],
  480. data: dict,
  481. account: Account,
  482. dependencies: Optional[list[PluginDependency]] = None,
  483. ) -> Pipeline:
  484. """Create a new app or update an existing one."""
  485. pipeline_data = data.get("rag_pipeline", {})
  486. # Set icon type
  487. icon_type_value = pipeline_data.get("icon_type")
  488. if icon_type_value in ["emoji", "link"]:
  489. icon_type = icon_type_value
  490. else:
  491. icon_type = "emoji"
  492. icon = str(pipeline_data.get("icon", ""))
  493. # Initialize pipeline based on mode
  494. workflow_data = data.get("workflow")
  495. if not workflow_data or not isinstance(workflow_data, dict):
  496. raise ValueError("Missing workflow data for rag pipeline")
  497. environment_variables_list = workflow_data.get("environment_variables", [])
  498. environment_variables = [
  499. variable_factory.build_environment_variable_from_mapping(obj) for obj in environment_variables_list
  500. ]
  501. conversation_variables_list = workflow_data.get("conversation_variables", [])
  502. conversation_variables = [
  503. variable_factory.build_conversation_variable_from_mapping(obj) for obj in conversation_variables_list
  504. ]
  505. rag_pipeline_variables_list = workflow_data.get("rag_pipeline_variables", [])
  506. graph = workflow_data.get("graph", {})
  507. for node in graph.get("nodes", []):
  508. if node.get("data", {}).get("type", "") == NodeType.KNOWLEDGE_RETRIEVAL.value:
  509. dataset_ids = node["data"].get("dataset_ids", [])
  510. node["data"]["dataset_ids"] = [
  511. decrypted_id
  512. for dataset_id in dataset_ids
  513. if (
  514. decrypted_id := self.decrypt_dataset_id(
  515. encrypted_data=dataset_id,
  516. tenant_id=account.current_tenant_id,
  517. )
  518. )
  519. ]
  520. if pipeline:
  521. # Update existing pipeline
  522. pipeline.name = pipeline_data.get("name", pipeline.name)
  523. pipeline.description = pipeline_data.get("description", pipeline.description)
  524. pipeline.updated_by = account.id
  525. else:
  526. if account.current_tenant_id is None:
  527. raise ValueError("Current tenant is not set")
  528. # Create new app
  529. pipeline = Pipeline()
  530. pipeline.id = str(uuid4())
  531. pipeline.tenant_id = account.current_tenant_id
  532. pipeline.name = pipeline_data.get("name", "")
  533. pipeline.description = pipeline_data.get("description", "")
  534. pipeline.created_by = account.id
  535. pipeline.updated_by = account.id
  536. self._session.add(pipeline)
  537. self._session.commit()
  538. # save dependencies
  539. if dependencies:
  540. redis_client.setex(
  541. f"{CHECK_DEPENDENCIES_REDIS_KEY_PREFIX}{pipeline.id}",
  542. IMPORT_INFO_REDIS_EXPIRY,
  543. CheckDependenciesPendingData(pipeline_id=pipeline.id, dependencies=dependencies).model_dump_json(),
  544. )
  545. workflow = (
  546. db.session.query(Workflow)
  547. .filter(
  548. Workflow.tenant_id == pipeline.tenant_id,
  549. Workflow.app_id == pipeline.id,
  550. Workflow.version == "draft",
  551. )
  552. .first()
  553. )
  554. # create draft workflow if not found
  555. if not workflow:
  556. workflow = Workflow(
  557. tenant_id=pipeline.tenant_id,
  558. app_id=pipeline.id,
  559. features="{}",
  560. type=WorkflowType.RAG_PIPELINE.value,
  561. version="draft",
  562. graph=json.dumps(graph),
  563. created_by=account.id,
  564. environment_variables=environment_variables,
  565. conversation_variables=conversation_variables,
  566. rag_pipeline_variables=rag_pipeline_variables_list,
  567. )
  568. db.session.add(workflow)
  569. db.session.flush()
  570. pipeline.workflow_id = workflow.id
  571. else:
  572. workflow.graph = json.dumps(graph)
  573. workflow.updated_by = account.id
  574. workflow.updated_at = datetime.now(UTC).replace(tzinfo=None)
  575. workflow.environment_variables = environment_variables
  576. workflow.conversation_variables = conversation_variables
  577. workflow.rag_pipeline_variables = rag_pipeline_variables_list
  578. # commit db session changes
  579. db.session.commit()
  580. return pipeline
  581. @classmethod
  582. def export_rag_pipeline_dsl(cls, pipeline: Pipeline, include_secret: bool = False) -> str:
  583. """
  584. Export pipeline
  585. :param pipeline: Pipeline instance
  586. :param include_secret: Whether include secret variable
  587. :return:
  588. """
  589. dataset = pipeline.dataset
  590. if not dataset:
  591. raise ValueError("Missing dataset for rag pipeline")
  592. icon_info = dataset.icon_info
  593. export_data = {
  594. "version": CURRENT_DSL_VERSION,
  595. "kind": "rag_pipeline",
  596. "rag_pipeline": {
  597. "name": dataset.name,
  598. "icon": icon_info.get("icon", "📙") if icon_info else "📙",
  599. "icon_type": icon_info.get("icon_type", "emoji") if icon_info else "emoji",
  600. "icon_background": icon_info.get("icon_background", "#FFEAD5") if icon_info else "#FFEAD5",
  601. "icon_url": icon_info.get("icon_url") if icon_info else None,
  602. "description": pipeline.description,
  603. },
  604. }
  605. cls._append_workflow_export_data(export_data=export_data, pipeline=pipeline, include_secret=include_secret)
  606. return yaml.dump(export_data, allow_unicode=True) # type: ignore
  607. @classmethod
  608. def _append_workflow_export_data(cls, *, export_data: dict, pipeline: Pipeline, include_secret: bool) -> None:
  609. """
  610. Append workflow export data
  611. :param export_data: export data
  612. :param pipeline: Pipeline instance
  613. """
  614. workflow = (
  615. db.session.query(Workflow)
  616. .filter(
  617. Workflow.tenant_id == pipeline.tenant_id,
  618. Workflow.app_id == pipeline.id,
  619. Workflow.version == "draft",
  620. )
  621. .first()
  622. )
  623. if not workflow:
  624. raise ValueError("Missing draft workflow configuration, please check.")
  625. workflow_dict = workflow.to_dict(include_secret=include_secret)
  626. for node in workflow_dict.get("graph", {}).get("nodes", []):
  627. if node.get("data", {}).get("type", "") == NodeType.KNOWLEDGE_RETRIEVAL.value:
  628. dataset_ids = node["data"].get("dataset_ids", [])
  629. node["data"]["dataset_ids"] = [
  630. cls.encrypt_dataset_id(dataset_id=dataset_id, tenant_id=pipeline.tenant_id)
  631. for dataset_id in dataset_ids
  632. ]
  633. export_data["workflow"] = workflow_dict
  634. dependencies = cls._extract_dependencies_from_workflow(workflow)
  635. export_data["dependencies"] = [
  636. jsonable_encoder(d.model_dump())
  637. for d in DependenciesAnalysisService.generate_dependencies(
  638. tenant_id=pipeline.tenant_id, dependencies=dependencies
  639. )
  640. ]
  641. @classmethod
  642. def _extract_dependencies_from_workflow(cls, workflow: Workflow) -> list[str]:
  643. """
  644. Extract dependencies from workflow
  645. :param workflow: Workflow instance
  646. :return: dependencies list format like ["langgenius/google"]
  647. """
  648. graph = workflow.graph_dict
  649. dependencies = cls._extract_dependencies_from_workflow_graph(graph)
  650. return dependencies
  651. @classmethod
  652. def _extract_dependencies_from_workflow_graph(cls, graph: Mapping) -> list[str]:
  653. """
  654. Extract dependencies from workflow graph
  655. :param graph: Workflow graph
  656. :return: dependencies list format like ["langgenius/google"]
  657. """
  658. dependencies = []
  659. for node in graph.get("nodes", []):
  660. try:
  661. typ = node.get("data", {}).get("type")
  662. match typ:
  663. case NodeType.TOOL.value:
  664. tool_entity = ToolNodeData(**node["data"])
  665. dependencies.append(
  666. DependenciesAnalysisService.analyze_tool_dependency(tool_entity.provider_id),
  667. )
  668. case NodeType.DATASOURCE.value:
  669. datasource_entity = DatasourceNodeData(**node["data"])
  670. if datasource_entity.provider_type != "local_file":
  671. dependencies.append(datasource_entity.plugin_id)
  672. case NodeType.LLM.value:
  673. llm_entity = LLMNodeData(**node["data"])
  674. dependencies.append(
  675. DependenciesAnalysisService.analyze_model_provider_dependency(llm_entity.model.provider),
  676. )
  677. case NodeType.QUESTION_CLASSIFIER.value:
  678. question_classifier_entity = QuestionClassifierNodeData(**node["data"])
  679. dependencies.append(
  680. DependenciesAnalysisService.analyze_model_provider_dependency(
  681. question_classifier_entity.model.provider
  682. ),
  683. )
  684. case NodeType.PARAMETER_EXTRACTOR.value:
  685. parameter_extractor_entity = ParameterExtractorNodeData(**node["data"])
  686. dependencies.append(
  687. DependenciesAnalysisService.analyze_model_provider_dependency(
  688. parameter_extractor_entity.model.provider
  689. ),
  690. )
  691. case NodeType.KNOWLEDGE_INDEX.value:
  692. knowledge_index_entity = KnowledgeConfiguration(**node["data"])
  693. if knowledge_index_entity.indexing_technique == "high_quality":
  694. if knowledge_index_entity.embedding_model_provider:
  695. dependencies.append(
  696. DependenciesAnalysisService.analyze_model_provider_dependency(
  697. knowledge_index_entity.embedding_model_provider
  698. ),
  699. )
  700. if knowledge_index_entity.retrieval_model.reranking_mode == "reranking_model":
  701. if knowledge_index_entity.retrieval_model.reranking_enable:
  702. if (
  703. knowledge_index_entity.retrieval_model.reranking_model
  704. and knowledge_index_entity.retrieval_model.reranking_mode == "reranking_model"
  705. ):
  706. if knowledge_index_entity.retrieval_model.reranking_model.reranking_provider_name:
  707. dependencies.append(
  708. DependenciesAnalysisService.analyze_model_provider_dependency(
  709. knowledge_index_entity.retrieval_model.reranking_model.reranking_provider_name
  710. ),
  711. )
  712. case NodeType.KNOWLEDGE_RETRIEVAL.value:
  713. knowledge_retrieval_entity = KnowledgeRetrievalNodeData(**node["data"])
  714. if knowledge_retrieval_entity.retrieval_mode == "multiple":
  715. if knowledge_retrieval_entity.multiple_retrieval_config:
  716. if (
  717. knowledge_retrieval_entity.multiple_retrieval_config.reranking_mode
  718. == "reranking_model"
  719. ):
  720. if knowledge_retrieval_entity.multiple_retrieval_config.reranking_model:
  721. dependencies.append(
  722. DependenciesAnalysisService.analyze_model_provider_dependency(
  723. knowledge_retrieval_entity.multiple_retrieval_config.reranking_model.provider
  724. ),
  725. )
  726. elif (
  727. knowledge_retrieval_entity.multiple_retrieval_config.reranking_mode
  728. == "weighted_score"
  729. ):
  730. if knowledge_retrieval_entity.multiple_retrieval_config.weights:
  731. vector_setting = (
  732. knowledge_retrieval_entity.multiple_retrieval_config.weights.vector_setting
  733. )
  734. dependencies.append(
  735. DependenciesAnalysisService.analyze_model_provider_dependency(
  736. vector_setting.embedding_provider_name
  737. ),
  738. )
  739. elif knowledge_retrieval_entity.retrieval_mode == "single":
  740. model_config = knowledge_retrieval_entity.single_retrieval_config
  741. if model_config:
  742. dependencies.append(
  743. DependenciesAnalysisService.analyze_model_provider_dependency(
  744. model_config.model.provider
  745. ),
  746. )
  747. case _:
  748. # TODO: Handle default case or unknown node types
  749. pass
  750. except Exception as e:
  751. logger.exception("Error extracting node dependency", exc_info=e)
  752. return dependencies
  753. @classmethod
  754. def _extract_dependencies_from_model_config(cls, model_config: Mapping) -> list[str]:
  755. """
  756. Extract dependencies from model config
  757. :param model_config: model config dict
  758. :return: dependencies list format like ["langgenius/google"]
  759. """
  760. dependencies = []
  761. try:
  762. # completion model
  763. model_dict = model_config.get("model", {})
  764. if model_dict:
  765. dependencies.append(
  766. DependenciesAnalysisService.analyze_model_provider_dependency(model_dict.get("provider", ""))
  767. )
  768. # reranking model
  769. dataset_configs = model_config.get("dataset_configs", {})
  770. if dataset_configs:
  771. for dataset_config in dataset_configs.get("datasets", {}).get("datasets", []):
  772. if dataset_config.get("reranking_model"):
  773. dependencies.append(
  774. DependenciesAnalysisService.analyze_model_provider_dependency(
  775. dataset_config.get("reranking_model", {})
  776. .get("reranking_provider_name", {})
  777. .get("provider")
  778. )
  779. )
  780. # tools
  781. agent_configs = model_config.get("agent_mode", {})
  782. if agent_configs:
  783. for agent_config in agent_configs.get("tools", []):
  784. dependencies.append(
  785. DependenciesAnalysisService.analyze_tool_dependency(agent_config.get("provider_id"))
  786. )
  787. except Exception as e:
  788. logger.exception("Error extracting model config dependency", exc_info=e)
  789. return dependencies
  790. @classmethod
  791. def get_leaked_dependencies(cls, tenant_id: str, dsl_dependencies: list[dict]) -> list[PluginDependency]:
  792. """
  793. Returns the leaked dependencies in current workspace
  794. """
  795. dependencies = [PluginDependency(**dep) for dep in dsl_dependencies]
  796. if not dependencies:
  797. return []
  798. return DependenciesAnalysisService.get_leaked_dependencies(tenant_id=tenant_id, dependencies=dependencies)
  799. @staticmethod
  800. def _generate_aes_key(tenant_id: str) -> bytes:
  801. """Generate AES key based on tenant_id"""
  802. return hashlib.sha256(tenant_id.encode()).digest()
  803. @classmethod
  804. def encrypt_dataset_id(cls, dataset_id: str, tenant_id: str) -> str:
  805. """Encrypt dataset_id using AES-CBC mode"""
  806. key = cls._generate_aes_key(tenant_id)
  807. iv = key[:16]
  808. cipher = AES.new(key, AES.MODE_CBC, iv)
  809. ct_bytes = cipher.encrypt(pad(dataset_id.encode(), AES.block_size))
  810. return base64.b64encode(ct_bytes).decode()
  811. @classmethod
  812. def decrypt_dataset_id(cls, encrypted_data: str, tenant_id: str) -> str | None:
  813. """AES decryption"""
  814. try:
  815. key = cls._generate_aes_key(tenant_id)
  816. iv = key[:16]
  817. cipher = AES.new(key, AES.MODE_CBC, iv)
  818. pt = unpad(cipher.decrypt(base64.b64decode(encrypted_data)), AES.block_size)
  819. return pt.decode()
  820. except Exception:
  821. return None
  822. @staticmethod
  823. def create_rag_pipeline_dataset(
  824. tenant_id: str,
  825. rag_pipeline_dataset_create_entity: RagPipelineDatasetCreateEntity,
  826. ):
  827. if rag_pipeline_dataset_create_entity.name:
  828. # check if dataset name already exists
  829. if (
  830. db.session.query(Dataset)
  831. .filter_by(name=rag_pipeline_dataset_create_entity.name, tenant_id=tenant_id)
  832. .first()
  833. ):
  834. raise ValueError(f"Dataset with name {rag_pipeline_dataset_create_entity.name} already exists.")
  835. else:
  836. # generate a random name as Untitled 1 2 3 ...
  837. datasets = db.session.query(Dataset).filter_by(tenant_id=tenant_id).all()
  838. names = [dataset.name for dataset in datasets]
  839. rag_pipeline_dataset_create_entity.name = generate_incremental_name(
  840. names,
  841. "Untitled",
  842. )
  843. with Session(db.engine) as session:
  844. rag_pipeline_dsl_service = RagPipelineDslService(session)
  845. account = cast(Account, current_user)
  846. rag_pipeline_import_info: RagPipelineImportInfo = rag_pipeline_dsl_service.import_rag_pipeline(
  847. account=account,
  848. import_mode=ImportMode.YAML_CONTENT.value,
  849. yaml_content=rag_pipeline_dataset_create_entity.yaml_content,
  850. dataset=None,
  851. dataset_name=rag_pipeline_dataset_create_entity.name,
  852. icon_info=rag_pipeline_dataset_create_entity.icon_info,
  853. )
  854. return {
  855. "id": rag_pipeline_import_info.id,
  856. "dataset_id": rag_pipeline_import_info.dataset_id,
  857. "pipeline_id": rag_pipeline_import_info.pipeline_id,
  858. "status": rag_pipeline_import_info.status,
  859. "imported_dsl_version": rag_pipeline_import_info.imported_dsl_version,
  860. "current_dsl_version": rag_pipeline_import_info.current_dsl_version,
  861. "error": rag_pipeline_import_info.error,
  862. }