| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788 |
- import logging
- import time
-
- import click
- from celery import shared_task
-
- from configs import dify_config
- from core.indexing_runner import DocumentIsPausedError, IndexingRunner
- from extensions.ext_database import db
- from libs.datetime_utils import naive_utc_now
- from models.dataset import Dataset, Document
- from services.feature_service import FeatureService
-
- logger = logging.getLogger(__name__)
-
-
- @shared_task(queue="dataset")
- def document_indexing_task(dataset_id: str, document_ids: list):
- """
- Async process document
- :param dataset_id:
- :param document_ids:
-
- Usage: document_indexing_task.delay(dataset_id, document_ids)
- """
- documents = []
- start_at = time.perf_counter()
-
- dataset = db.session.query(Dataset).where(Dataset.id == dataset_id).first()
- if not dataset:
- logger.info(click.style(f"Dataset is not found: {dataset_id}", fg="yellow"))
- db.session.close()
- return
- # check document limit
- features = FeatureService.get_features(dataset.tenant_id)
- try:
- if features.billing.enabled:
- vector_space = features.vector_space
- count = len(document_ids)
- batch_upload_limit = int(dify_config.BATCH_UPLOAD_LIMIT)
- if features.billing.subscription.plan == "sandbox" and count > 1:
- raise ValueError("Your current plan does not support batch upload, please upgrade your plan.")
- if count > batch_upload_limit:
- raise ValueError(f"You have reached the batch upload limit of {batch_upload_limit}.")
- if 0 < vector_space.limit <= vector_space.size:
- raise ValueError(
- "Your total number of documents plus the number of uploads have over the limit of "
- "your subscription."
- )
- except Exception as e:
- for document_id in document_ids:
- document = (
- db.session.query(Document).where(Document.id == document_id, Document.dataset_id == dataset_id).first()
- )
- if document:
- document.indexing_status = "error"
- document.error = str(e)
- document.stopped_at = naive_utc_now()
- db.session.add(document)
- db.session.commit()
- db.session.close()
- return
-
- for document_id in document_ids:
- logger.info(click.style(f"Start process document: {document_id}", fg="green"))
-
- document = (
- db.session.query(Document).where(Document.id == document_id, Document.dataset_id == dataset_id).first()
- )
-
- if document:
- document.indexing_status = "parsing"
- document.processing_started_at = naive_utc_now()
- documents.append(document)
- db.session.add(document)
- db.session.commit()
-
- try:
- indexing_runner = IndexingRunner()
- indexing_runner.run(documents)
- end_at = time.perf_counter()
- logger.info(click.style(f"Processed dataset: {dataset_id} latency: {end_at - start_at}", fg="green"))
- except DocumentIsPausedError as ex:
- logger.info(click.style(str(ex), fg="yellow"))
- except Exception:
- logger.exception("Document indexing task failed, dataset_id: %s", dataset_id)
- finally:
- db.session.close()
|