You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Joe 82189e1bc5
feat: add langfuse llm node input and output (#16924)
7 달 전
..
.idea fix nltk averaged_perceptron_tagger download and fix score limit is none (#7582) 1 년 전
.vscode feat/enhance the multi-modal support (#8818) 1 년 전
configs feat: support Tablestore vector database (#16601) 7 달 전
constants fix document extractor node incorrectly processing doc and ppt files (#12902) 8 달 전
contexts feat: Add caching mechanism for plugin model schemas (#14898) 8 달 전
controllers feat: support Tablestore vector database (#16601) 7 달 전
core feat: add langfuse llm node input and output (#16924) 7 달 전
docker Set default LOG_LEVEL to INFO for celery workers and beat (#13066) 9 달 전
events chore(quota): Update deduct quota (#14337) 8 달 전
extensions feat: cleanup free tenants expired data like messages/conversations/workflow_runs/workflow_node_executions (#16490) 7 달 전
factories fix: validation for upload methods of non-image files within the work… (#15932) 7 달 전
fields fix:weight_type missing when create document in dataset (#16503) 7 달 전
libs Update login.py (#15320) 7 달 전
migrations Support knowledge metadata filter (#15982) 7 달 전
models fix full-doc mode document doesn't reindex after enable or un_archive (#16737) 7 달 전
schedule Fix function's name mismatch (#16681) 7 달 전
services Fix wrong allowed extensions (#16893) 7 달 전
tasks feat: add langfuse llm node input and output (#16924) 7 달 전
templates feat: account delete (#11829) 10 달 전
tests feat: support Tablestore vector database (#16601) 7 달 전
.dockerignore Introduce Plugins (#13836) 8 달 전
.env.example feat: support Tablestore vector database (#16601) 7 달 전
.ruff.toml chore(api): enhance ruff rules to disallow dangerous functions and modules (#16461) 7 달 전
Dockerfile chore: remove useless doc and font (#15838) 7 달 전
README.md feat: update backend documentation (#13374) 8 달 전
app.py fix(app.py): if condition (#12314) 10 달 전
app_factory.py Fix/plugin race condition (#14253) 8 달 전
commands.py feat: support Tablestore vector database (#16601) 7 달 전
dify_app.py refactor: assembling the app features in modular way (#9129) 11 달 전
mypy.ini Remove the useless excluded item in mypy.ini (#16777) 7 달 전
poetry.lock feat: support Tablestore vector database (#16601) 7 달 전
poetry.toml build: initial support for poetry build tool (#4513) 1 년 전
pyproject.toml feat: support Tablestore vector database (#16601) 7 달 전
pytest.ini fix: add missing package xinference_client to pass vdb CI tests (#13865) 8 달 전

README.md

Dify Backend API

Usage

[!IMPORTANT] In the v0.6.12 release, we deprecated pip as the package management tool for Dify API Backend service and replaced it with poetry.

  1. Start the docker-compose stack

The backend require some middleware, including PostgreSQL, Redis, and Weaviate, which can be started together using docker-compose.

   cd ../docker
   cp middleware.env.example middleware.env
   # change the profile to other vector database if you are not using weaviate
   docker compose -f docker-compose.middleware.yaml --profile weaviate -p dify up -d
   cd ../api
  1. Copy .env.example to .env
   cp .env.example .env 
  1. Generate a SECRET_KEY in the .env file.

bash for Linux

   sed -i "/^SECRET_KEY=/c\SECRET_KEY=$(openssl rand -base64 42)" .env

bash for Mac

   secret_key=$(openssl rand -base64 42)
   sed -i '' "/^SECRET_KEY=/c\\
   SECRET_KEY=${secret_key}" .env
  1. Create environment.

Dify API service uses Poetry to manage dependencies. First, you need to add the poetry shell plugin, if you don’t have it already, in order to run in a virtual environment. [Note: Poetry shell is no longer a native command so you need to install the poetry plugin beforehand]

   poetry self add poetry-plugin-shell

Then, You can execute poetry shell to activate the environment.

  1. Install dependencies
   poetry env use 3.12
   poetry install
  1. Run migrate

Before the first launch, migrate the database to the latest version.

   poetry run python -m flask db upgrade
  1. Start backend
   poetry run python -m flask run --host 0.0.0.0 --port=5001 --debug
  1. Start Dify web service.
  2. Setup your application by visiting http://localhost:3000
  3. If you need to handle and debug the async tasks (e.g. dataset importing and documents indexing), please start the worker service.
   poetry run python -m celery -A app.celery worker -P gevent -c 1 --loglevel INFO -Q dataset,generation,mail,ops_trace,app_deletion

Testing

  1. Install dependencies for both the backend and the test environment
   poetry install -C api --with dev
  1. Run the tests locally with mocked system environment variables in tool.pytest_env section in pyproject.toml
   poetry run -P api bash dev/pytest/pytest_all_tests.sh