You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148
  1. from core.model_runtime.entities.llm_entities import LLMResult
  2. from core.model_runtime.entities.message_entities import PromptMessage, SystemPromptMessage, UserPromptMessage
  3. from core.tools.__base.tool import Tool
  4. from core.tools.__base.tool_runtime import ToolRuntime
  5. from core.tools.entities.tool_entities import ToolProviderType
  6. from core.tools.utils.model_invocation_utils import ModelInvocationUtils
  7. _SUMMARY_PROMPT = """You are a professional language researcher, you are interested in the language
  8. and you can quickly aimed at the main point of an webpage and reproduce it in your own words but
  9. retain the original meaning and keep the key points.
  10. however, the text you got is too long, what you got is possible a part of the text.
  11. Please summarize the text you got.
  12. """
  13. class BuiltinTool(Tool):
  14. """
  15. Builtin tool
  16. :param meta: the meta data of a tool call processing
  17. """
  18. def __init__(self, provider: str, **kwargs):
  19. super().__init__(**kwargs)
  20. self.provider = provider
  21. def fork_tool_runtime(self, runtime: ToolRuntime) -> "BuiltinTool":
  22. """
  23. fork a new tool with metadata
  24. :return: the new tool
  25. """
  26. return self.__class__(
  27. entity=self.entity.model_copy(),
  28. runtime=runtime,
  29. provider=self.provider,
  30. )
  31. def invoke_model(self, user_id: str, prompt_messages: list[PromptMessage], stop: list[str]) -> LLMResult:
  32. """
  33. invoke model
  34. :param user_id: the user id
  35. :param prompt_messages: the prompt messages
  36. :param stop: the stop words
  37. :return: the model result
  38. """
  39. # invoke model
  40. return ModelInvocationUtils.invoke(
  41. user_id=user_id,
  42. tenant_id=self.runtime.tenant_id or "",
  43. tool_type="builtin",
  44. tool_name=self.entity.identity.name,
  45. prompt_messages=prompt_messages,
  46. )
  47. def tool_provider_type(self) -> ToolProviderType:
  48. return ToolProviderType.BUILT_IN
  49. def get_max_tokens(self) -> int:
  50. """
  51. get max tokens
  52. :return: the max tokens
  53. """
  54. if self.runtime is None:
  55. raise ValueError("runtime is required")
  56. return ModelInvocationUtils.get_max_llm_context_tokens(
  57. tenant_id=self.runtime.tenant_id or "",
  58. )
  59. def get_prompt_tokens(self, prompt_messages: list[PromptMessage]) -> int:
  60. """
  61. get prompt tokens
  62. :param prompt_messages: the prompt messages
  63. :return: the tokens
  64. """
  65. if self.runtime is None:
  66. raise ValueError("runtime is required")
  67. return ModelInvocationUtils.calculate_tokens(
  68. tenant_id=self.runtime.tenant_id or "", prompt_messages=prompt_messages
  69. )
  70. def summary(self, user_id: str, content: str) -> str:
  71. max_tokens = self.get_max_tokens()
  72. if self.get_prompt_tokens(prompt_messages=[UserPromptMessage(content=content)]) < max_tokens * 0.6:
  73. return content
  74. def get_prompt_tokens(content: str) -> int:
  75. return self.get_prompt_tokens(
  76. prompt_messages=[SystemPromptMessage(content=_SUMMARY_PROMPT), UserPromptMessage(content=content)]
  77. )
  78. def summarize(content: str) -> str:
  79. summary = self.invoke_model(
  80. user_id=user_id,
  81. prompt_messages=[SystemPromptMessage(content=_SUMMARY_PROMPT), UserPromptMessage(content=content)],
  82. stop=[],
  83. )
  84. assert isinstance(summary.message.content, str)
  85. return summary.message.content
  86. lines = content.split("\n")
  87. new_lines = []
  88. # split long line into multiple lines
  89. for i in range(len(lines)):
  90. line = lines[i]
  91. if not line.strip():
  92. continue
  93. if len(line) < max_tokens * 0.5:
  94. new_lines.append(line)
  95. elif get_prompt_tokens(line) > max_tokens * 0.7:
  96. while get_prompt_tokens(line) > max_tokens * 0.7:
  97. new_lines.append(line[: int(max_tokens * 0.5)])
  98. line = line[int(max_tokens * 0.5) :]
  99. new_lines.append(line)
  100. else:
  101. new_lines.append(line)
  102. # merge lines into messages with max tokens
  103. messages: list[str] = []
  104. for j in new_lines:
  105. if len(messages) == 0:
  106. messages.append(j)
  107. else:
  108. if len(messages[-1]) + len(j) < max_tokens * 0.5:
  109. messages[-1] += j
  110. if get_prompt_tokens(messages[-1] + j) > max_tokens * 0.7:
  111. messages.append(j)
  112. else:
  113. messages[-1] += j
  114. summaries = []
  115. for i in range(len(messages)):
  116. message = messages[i]
  117. summary = summarize(message)
  118. summaries.append(summary)
  119. result = "\n".join(summaries)
  120. if self.get_prompt_tokens(prompt_messages=[UserPromptMessage(content=result)]) > max_tokens * 0.7:
  121. return self.summary(user_id=user_id, content=result)
  122. return result