| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394 | 
							- import base64
 - import json
 - import logging
 - from typing import List, Optional, cast
 - 
 - import numpy as np
 - from core.model_manager import ModelInstance
 - from core.model_runtime.entities.model_entities import ModelPropertyKey
 - from core.model_runtime.model_providers.__base.text_embedding_model import TextEmbeddingModel
 - from extensions.ext_database import db
 - from langchain.embeddings.base import Embeddings
 - 
 - from extensions.ext_redis import redis_client
 - from libs import helper
 - from models.dataset import Embedding
 - from sqlalchemy.exc import IntegrityError
 - 
 - logger = logging.getLogger(__name__)
 - 
 - 
 - class CacheEmbedding(Embeddings):
 -     def __init__(self, model_instance: ModelInstance, user: Optional[str] = None) -> None:
 -         self._model_instance = model_instance
 -         self._user = user
 - 
 -     def embed_documents(self, texts: List[str]) -> List[List[float]]:
 -         """Embed search docs in batches of 10."""
 -         text_embeddings = []
 -         try:
 -             model_type_instance = cast(TextEmbeddingModel, self._model_instance.model_type_instance)
 -             model_schema = model_type_instance.get_model_schema(self._model_instance.model, self._model_instance.credentials)
 -             max_chunks = model_schema.model_properties[ModelPropertyKey.MAX_CHUNKS] \
 -                 if model_schema and ModelPropertyKey.MAX_CHUNKS in model_schema.model_properties else 1
 -             for i in range(0, len(texts), max_chunks):
 -                 batch_texts = texts[i:i + max_chunks]
 - 
 -                 embedding_result = self._model_instance.invoke_text_embedding(
 -                     texts=batch_texts,
 -                     user=self._user
 -                 )
 - 
 -                 for vector in embedding_result.embeddings:
 -                     try:
 -                         normalized_embedding = (vector / np.linalg.norm(vector)).tolist()
 -                         text_embeddings.append(normalized_embedding)
 -                     except IntegrityError:
 -                         db.session.rollback()
 -                     except Exception as e:
 -                         logging.exception('Failed to add embedding to redis')
 - 
 -         except Exception as ex:
 -             logger.error('Failed to embed documents: ', ex)
 -             raise ex
 - 
 -         return text_embeddings
 - 
 -     def embed_query(self, text: str) -> List[float]:
 -         """Embed query text."""
 -         # use doc embedding cache or store if not exists
 -         hash = helper.generate_text_hash(text)
 -         embedding_cache_key = f'{self._model_instance.provider}_{self._model_instance.model}_{hash}'
 -         embedding = redis_client.get(embedding_cache_key)
 -         if embedding:
 -             redis_client.expire(embedding_cache_key, 600)
 -             return list(np.frombuffer(base64.b64decode(embedding), dtype="float"))
 - 
 - 
 -         try:
 -             embedding_result = self._model_instance.invoke_text_embedding(
 -                 texts=[text],
 -                 user=self._user
 -             )
 - 
 -             embedding_results = embedding_result.embeddings[0]
 -             embedding_results = (embedding_results / np.linalg.norm(embedding_results)).tolist()
 -         except Exception as ex:
 -             raise ex
 - 
 -         try:
 -             # encode embedding to base64
 -             embedding_vector = np.array(embedding_results)
 -             vector_bytes = embedding_vector.tobytes()
 -             # Transform to Base64
 -             encoded_vector = base64.b64encode(vector_bytes)
 -             # Transform to string
 -             encoded_str = encoded_vector.decode("utf-8")
 -             redis_client.setex(embedding_cache_key, 600, encoded_str)
 - 
 -         except IntegrityError:
 -             db.session.rollback()
 -         except:
 -             logging.exception('Failed to add embedding to redis')
 - 
 -         return embedding_results
 
 
  |