Du kannst nicht mehr als 25 Themen auswählen Themen müssen mit entweder einem Buchstaben oder einer Ziffer beginnen. Sie können Bindestriche („-“) enthalten und bis zu 35 Zeichen lang sein.
Bowen Liang 7943f7f697
chore: fix legacy API usages of Query.get() by Session.get() in SqlAlchemy 2 (#6340)
vor 1 Jahr
..
configs update celery beat scheduler time to env (#6352) vor 1 Jahr
constants feat:add tts-streaming config and future (#5492) vor 1 Jahr
controllers chore: fix legacy API usages of Query.get() by Session.get() in SqlAlchemy 2 (#6340) vor 1 Jahr
core fix wrong using of RetrievalMethod Enum (#6345) vor 1 Jahr
docker feat: correctly delete applications using Celery workers (#5787) vor 1 Jahr
events Feat/delete file when clean document (#5882) vor 1 Jahr
extensions update celery beat scheduler time to env (#6352) vor 1 Jahr
fields feat: app rate limit (#5844) vor 1 Jahr
libs feat: app rate limit (#5844) vor 1 Jahr
migrations feat: app rate limit (#5844) vor 1 Jahr
models chore: fix legacy API usages of Query.get() by Session.get() in SqlAlchemy 2 (#6340) vor 1 Jahr
schedule refactor(api): switch to dify_config with Pydantic in controllers and schedule (#6237) vor 1 Jahr
services fix wrong using of RetrievalMethod Enum (#6345) vor 1 Jahr
tasks Feat/delete file when clean document (#5882) vor 1 Jahr
templates feat: implement forgot password feature (#5534) vor 1 Jahr
tests feat: support MyScale vector database (#6092) vor 1 Jahr
.dockerignore build: support Poetry for depencencies tool in api's Dockerfile (#5105) vor 1 Jahr
.env.example update celery beat scheduler time to env (#6352) vor 1 Jahr
Dockerfile chore: skip pip upgrade preparation in api dockerfile (#5999) vor 1 Jahr
README.md typo: Update README.md (#5987) vor 1 Jahr
app.py Chore/remove-unused-code (#5917) vor 1 Jahr
commands.py feat: support AnalyticDB vector store (#5586) vor 1 Jahr
poetry.lock chore: fix legacy API usages of Query.get() by Session.get() in SqlAlchemy 2 (#6340) vor 1 Jahr
poetry.toml build: initial support for poetry build tool (#4513) vor 1 Jahr
pyproject.toml chore: fix legacy API usages of Query.get() by Session.get() in SqlAlchemy 2 (#6340) vor 1 Jahr

README.md

Dify Backend API

Usage

[!IMPORTANT] In the v0.6.12 release, we deprecated pip as the package management tool for Dify API Backend service and replaced it with poetry.

  1. Start the docker-compose stack

The backend require some middleware, including PostgreSQL, Redis, and Weaviate, which can be started together using docker-compose.

   cd ../docker
   cp middleware.env.example middleware.env
   docker compose -f docker-compose.middleware.yaml -p dify up -d
   cd ../api
  1. Copy .env.example to .env
  2. Generate a SECRET_KEY in the .env file.
   sed -i "/^SECRET_KEY=/c\SECRET_KEY=$(openssl rand -base64 42)" .env
   secret_key=$(openssl rand -base64 42)
   sed -i '' "/^SECRET_KEY=/c\\
   SECRET_KEY=${secret_key}" .env
  1. Create environment.

Dify API service uses Poetry to manage dependencies. You can execute poetry shell to activate the environment.

  1. Install dependencies
   poetry env use 3.10
   poetry install

In case of contributors missing to update dependencies for pyproject.toml, you can perform the following shell instead.

   poetry shell                                               # activate current environment
   poetry add $(cat requirements.txt)           # install dependencies of production and update pyproject.toml
   poetry add $(cat requirements-dev.txt) --group dev    # install dependencies of development and update pyproject.toml
  1. Run migrate

Before the first launch, migrate the database to the latest version.

   poetry run python -m flask db upgrade
  1. Start backend
   poetry run python -m flask run --host 0.0.0.0 --port=5001 --debug
  1. Start Dify web service.
  2. Setup your application by visiting http://localhost:3000
  3. If you need to debug local async processing, please start the worker service.
   poetry run python -m celery -A app.celery worker -P gevent -c 1 --loglevel INFO -Q dataset,generation,mail,ops_trace,app_deletion

The started celery app handles the async tasks, e.g. dataset importing and documents indexing.

Testing

  1. Install dependencies for both the backend and the test environment
   poetry install --with dev
  1. Run the tests locally with mocked system environment variables in tool.pytest_env section in pyproject.toml
   cd ../
   poetry run -C api bash dev/pytest/pytest_all_tests.sh