You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Rhys 6f4885d86d
Encode invitee email in the invitation link (#10842)
11 月之前
..
.idea fix nltk averaged_perceptron_tagger download and fix score limit is none (#7582) 1 年之前
.vscode feat/enhance the multi-modal support (#8818) 1 年之前
configs feat: AnalyticDB vector store supports invocation via SQL. (#10802) 11 月之前
constants Feat/add Slovensko (Slovenija) (#10731) 11 月之前
contexts feat/enhance the multi-modal support (#8818) 1 年之前
controllers Encode invitee email in the invitation link (#10842) 11 月之前
core Feat/add langsmith dotted order (#10856) 11 月之前
docker fix: remove unused queue `generation` (#10532) 11 月之前
events feat/enhance the multi-modal support (#8818) 1 年之前
extensions Feat/clean message records (#10588) 11 月之前
factories Fix: crash of workflow file upload (#10831) 11 月之前
fields Conversation delete issue (#10423) 1 年之前
libs chore(lint): cleanup repeated cause exception in logging.exception replaced by helpful message (#10425) 11 月之前
migrations Feat/clean message records (#10588) 11 月之前
models Fix: crash of workflow file upload (#10831) 11 月之前
schedule Feat/clean message records (#10588) 11 月之前
services Feat/account not found (#10804) 11 月之前
tasks chore(lint): cleanup repeated cause exception in logging.exception replaced by helpful message (#10425) 11 月之前
templates Feat/new login (#8120) 1 年之前
tests feat: support json schema for gemini models (#10835) 11 月之前
.dockerignore build: support Poetry for depencencies tool in api's Dockerfile (#5105) 1 年之前
.env.example feat: AnalyticDB vector store supports invocation via SQL. (#10802) 11 月之前
Dockerfile Update expat version (#10686) 11 月之前
README.md chore(ci): bring back poetry cache to speed up CI jobs (#10347) 1 年之前
app.py chore(api): remove setting of expired remember_token cookie in after_request (#10582) 11 月之前
app_factory.py fix: (#10437 followup) fix conditions with DEBUG config (#10438) 11 月之前
commands.py chore(lint): cleanup repeated cause exception in logging.exception replaced by helpful message (#10425) 11 月之前
poetry.lock Add youtube-transcript-api as tool (#10772) 11 月之前
poetry.toml build: initial support for poetry build tool (#4513) 1 年之前
pyproject.toml Add youtube-transcript-api as tool (#10772) 11 月之前
pytest.ini feat: add models for gitee.ai (#9490) 1 年之前

README.md

Dify Backend API

Usage

[!IMPORTANT] In the v0.6.12 release, we deprecated pip as the package management tool for Dify API Backend service and replaced it with poetry.

  1. Start the docker-compose stack

The backend require some middleware, including PostgreSQL, Redis, and Weaviate, which can be started together using docker-compose.

   cd ../docker
   cp middleware.env.example middleware.env
   # change the profile to other vector database if you are not using weaviate
   docker compose -f docker-compose.middleware.yaml --profile weaviate -p dify up -d
   cd ../api
  1. Copy .env.example to .env
  2. Generate a SECRET_KEY in the .env file.
   sed -i "/^SECRET_KEY=/c\SECRET_KEY=$(openssl rand -base64 42)" .env
   secret_key=$(openssl rand -base64 42)
   sed -i '' "/^SECRET_KEY=/c\\
   SECRET_KEY=${secret_key}" .env
  1. Create environment.

Dify API service uses Poetry to manage dependencies. You can execute poetry shell to activate the environment.

  1. Install dependencies
   poetry env use 3.10
   poetry install

In case of contributors missing to update dependencies for pyproject.toml, you can perform the following shell instead.

   poetry shell                                               # activate current environment
   poetry add $(cat requirements.txt)           # install dependencies of production and update pyproject.toml
   poetry add $(cat requirements-dev.txt) --group dev    # install dependencies of development and update pyproject.toml
  1. Run migrate

Before the first launch, migrate the database to the latest version.

   poetry run python -m flask db upgrade
  1. Start backend
   poetry run python -m flask run --host 0.0.0.0 --port=5001 --debug
  1. Start Dify web service.
  2. Setup your application by visiting http://localhost:3000
  3. If you need to handle and debug the async tasks (e.g. dataset importing and documents indexing), please start the worker service.
   poetry run python -m celery -A app.celery worker -P gevent -c 1 --loglevel INFO -Q dataset,generation,mail,ops_trace,app_deletion

Testing

  1. Install dependencies for both the backend and the test environment
   poetry install -C api --with dev
  1. Run the tests locally with mocked system environment variables in tool.pytest_env section in pyproject.toml
   poetry run -C api bash dev/pytest/pytest_all_tests.sh