您最多选择25个主题 主题必须以字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
omr 6d2c6caa23
refactor: remove unnecessary 'closing' usage for boto3 client (#9343)
1年前
..
.idea fix nltk averaged_perceptron_tagger download and fix score limit is none (#7582) 1年前
.vscode chore: remove .idea and .vscode from root path (#7437) 1年前
configs chore: clean-up unnecessary annotation on configs with non-null default value (#9323) 1年前
constants feat: regenerate in `Chat`, `agent` and `Chatflow` app (#7661) 1年前
contexts chore(api): Introduce Ruff Formatter. (#7291) 1年前
controllers chore: disable chat service API passing `parent_message_id` (#8984) 1年前
core feat: Add qwen2.5 72B Instruct model in Fireworks AI (#9340) 1年前
docker fix: use LOG_LEVEL for celery startup (#7628) 1年前
events chore: bump ruff to 0.6.8 for fixing violation in SIM910 (#8869) 1年前
extensions refactor: remove unnecessary 'closing' usage for boto3 client (#9343) 1年前
fields external knowledge api (#8913) 1年前
libs Feat/implement-refresh-tokens (#9233) 1年前
migrations fix(migrations): correct parent_message_id for service-api records (#9132) 1年前
models external knowledge api (#8913) 1年前
schedule external knowledge api (#8913) 1年前
services refactor: Refactor the service of retrieval the recommend app (#9302) 1年前
tasks external knowledge api (#8913) 1年前
templates feat: implement forgot password feature (#5534) 1年前
tests Add Volcengine VikingDB as new vector provider (#9287) 1年前
.dockerignore build: support Poetry for depencencies tool in api's Dockerfile (#5105) 1年前
.env.example Add Volcengine VikingDB as new vector provider (#9287) 1年前
Dockerfile fix: Version '2.6.2-2' for 'expat' was not found (#8182) 1年前
README.md fix: poetry installation in CI jobs (#9336) 1年前
app.py Feat/implement-refresh-tokens (#9233) 1年前
commands.py feat:support baidu vector db (#9185) 1年前
poetry.lock fix: Add new Milvus Lite wheel for manylinux2014_aarch64 (#9316) 1年前
poetry.toml build: initial support for poetry build tool (#4513) 1年前
pyproject.toml chore: remove the copied zhipu_ai sdk (#9270) 1年前
pytest.ini chore: move testing env variables from pyproject.toml to pytest.ini (#9019) 1年前

README.md

Dify Backend API

Usage

[!IMPORTANT] In the v0.6.12 release, we deprecated pip as the package management tool for Dify API Backend service and replaced it with poetry.

  1. Start the docker-compose stack

The backend require some middleware, including PostgreSQL, Redis, and Weaviate, which can be started together using docker-compose.

   cd ../docker
   cp middleware.env.example middleware.env
   # change the profile to other vector database if you are not using weaviate
   docker compose -f docker-compose.middleware.yaml --profile weaviate -p dify up -d
   cd ../api
  1. Copy .env.example to .env
  2. Generate a SECRET_KEY in the .env file.
   sed -i "/^SECRET_KEY=/c\SECRET_KEY=$(openssl rand -base64 42)" .env
   secret_key=$(openssl rand -base64 42)
   sed -i '' "/^SECRET_KEY=/c\\
   SECRET_KEY=${secret_key}" .env
  1. Create environment.

Dify API service uses Poetry to manage dependencies. You can execute poetry shell to activate the environment.

  1. Install dependencies
   poetry env use 3.10
   poetry install

In case of contributors missing to update dependencies for pyproject.toml, you can perform the following shell instead.

   poetry shell                                               # activate current environment
   poetry add $(cat requirements.txt)           # install dependencies of production and update pyproject.toml
   poetry add $(cat requirements-dev.txt) --group dev    # install dependencies of development and update pyproject.toml
  1. Run migrate

Before the first launch, migrate the database to the latest version.

   poetry run python -m flask db upgrade
  1. Start backend
   poetry run python -m flask run --host 0.0.0.0 --port=5001 --debug
  1. Start Dify web service.
  2. Setup your application by visiting http://localhost:3000
  3. If you need to handle and debug the async tasks (e.g. dataset importing and documents indexing), please start the worker service.
   poetry run python -m celery -A app.celery worker -P gevent -c 1 --loglevel INFO -Q dataset,generation,mail,ops_trace,app_deletion

Testing

  1. Install dependencies for both the backend and the test environment
   poetry install --with dev
  1. Run the tests locally with mocked system environment variables in tool.pytest_env section in pyproject.toml
   cd ../
   poetry run -C api bash dev/pytest/pytest_all_tests.sh