| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415 | 
							- import json
 - import logging
 - 
 - from typing import Union, Generator, Dict, Any, Tuple, List
 - 
 - from core.model_runtime.entities.message_entities import PromptMessage, UserPromptMessage,\
 -       SystemPromptMessage, AssistantPromptMessage, ToolPromptMessage, PromptMessageTool
 - from core.model_runtime.entities.llm_entities import LLMResultChunk, LLMResult, LLMUsage, LLMResultChunkDelta
 - from core.model_manager import ModelInstance
 - from core.application_queue_manager import PublishFrom
 - 
 - from core.tools.errors import ToolInvokeError, ToolNotFoundError, \
 -     ToolNotSupportedError, ToolProviderNotFoundError, ToolParamterValidationError, \
 -           ToolProviderCredentialValidationError
 - 
 - from core.features.assistant_base_runner import BaseAssistantApplicationRunner
 - 
 - from models.model import Conversation, Message, MessageAgentThought
 - 
 - logger = logging.getLogger(__name__)
 - 
 - class AssistantFunctionCallApplicationRunner(BaseAssistantApplicationRunner):
 -     def run(self, conversation: Conversation,
 -                 message: Message,
 -                 query: str,
 -     ) -> Generator[LLMResultChunk, None, None]:
 -         """
 -         Run FunctionCall agent application
 -         """
 -         app_orchestration_config = self.app_orchestration_config
 - 
 -         prompt_template = self.app_orchestration_config.prompt_template.simple_prompt_template or ''
 -         prompt_messages = self.history_prompt_messages
 -         prompt_messages = self.organize_prompt_messages(
 -             prompt_template=prompt_template,
 -             query=query,
 -             prompt_messages=prompt_messages
 -         )
 - 
 -         # convert tools into ModelRuntime Tool format
 -         prompt_messages_tools: List[PromptMessageTool] = []
 -         tool_instances = {}
 -         for tool in self.app_orchestration_config.agent.tools if self.app_orchestration_config.agent else []:
 -             try:
 -                 prompt_tool, tool_entity = self._convert_tool_to_prompt_message_tool(tool)
 -             except Exception:
 -                 # api tool may be deleted
 -                 continue
 -             # save tool entity
 -             tool_instances[tool.tool_name] = tool_entity
 -             # save prompt tool
 -             prompt_messages_tools.append(prompt_tool)
 - 
 -         # convert dataset tools into ModelRuntime Tool format
 -         for dataset_tool in self.dataset_tools:
 -             prompt_tool = self._convert_dataset_retriever_tool_to_prompt_message_tool(dataset_tool)
 -             # save prompt tool
 -             prompt_messages_tools.append(prompt_tool)
 -             # save tool entity
 -             tool_instances[dataset_tool.identity.name] = dataset_tool
 - 
 -         iteration_step = 1
 -         max_iteration_steps = min(app_orchestration_config.agent.max_iteration, 5) + 1
 - 
 -         # continue to run until there is not any tool call
 -         function_call_state = True
 -         agent_thoughts: List[MessageAgentThought] = []
 -         llm_usage = {
 -             'usage': None
 -         }
 -         final_answer = ''
 - 
 -         def increase_usage(final_llm_usage_dict: Dict[str, LLMUsage], usage: LLMUsage):
 -             if not final_llm_usage_dict['usage']:
 -                 final_llm_usage_dict['usage'] = usage
 -             else:
 -                 llm_usage = final_llm_usage_dict['usage']
 -                 llm_usage.prompt_tokens += usage.prompt_tokens
 -                 llm_usage.completion_tokens += usage.completion_tokens
 -                 llm_usage.prompt_price += usage.prompt_price
 -                 llm_usage.completion_price += usage.completion_price
 - 
 -         model_instance = self.model_instance
 - 
 -         while function_call_state and iteration_step <= max_iteration_steps:
 -             function_call_state = False
 - 
 -             if iteration_step == max_iteration_steps:
 -                 # the last iteration, remove all tools
 -                 prompt_messages_tools = []
 - 
 -             message_file_ids = []
 -             agent_thought = self.create_agent_thought(
 -                 message_id=message.id,
 -                 message='',
 -                 tool_name='',
 -                 tool_input='',
 -                 messages_ids=message_file_ids
 -             )
 -             self.queue_manager.publish_agent_thought(agent_thought, PublishFrom.APPLICATION_MANAGER)
 - 
 -             # recale llm max tokens
 -             self.recale_llm_max_tokens(self.model_config, prompt_messages)
 -             # invoke model
 -             chunks: Union[Generator[LLMResultChunk, None, None], LLMResult] = model_instance.invoke_llm(
 -                 prompt_messages=prompt_messages,
 -                 model_parameters=app_orchestration_config.model_config.parameters,
 -                 tools=prompt_messages_tools,
 -                 stop=app_orchestration_config.model_config.stop,
 -                 stream=self.stream_tool_call,
 -                 user=self.user_id,
 -                 callbacks=[],
 -             )
 - 
 -             tool_calls: List[Tuple[str, str, Dict[str, Any]]] = []
 - 
 -             # save full response
 -             response = ''
 - 
 -             # save tool call names and inputs
 -             tool_call_names = ''
 -             tool_call_inputs = ''
 - 
 -             current_llm_usage = None
 - 
 -             if self.stream_tool_call:
 -                 for chunk in chunks:
 -                     # check if there is any tool call
 -                     if self.check_tool_calls(chunk):
 -                         function_call_state = True
 -                         tool_calls.extend(self.extract_tool_calls(chunk))
 -                         tool_call_names = ';'.join([tool_call[1] for tool_call in tool_calls])
 -                         try:
 -                             tool_call_inputs = json.dumps({
 -                                 tool_call[1]: tool_call[2] for tool_call in tool_calls
 -                             }, ensure_ascii=False)
 -                         except json.JSONDecodeError as e:
 -                             # ensure ascii to avoid encoding error
 -                             tool_call_inputs = json.dumps({
 -                                 tool_call[1]: tool_call[2] for tool_call in tool_calls
 -                             })
 - 
 -                     if chunk.delta.message and chunk.delta.message.content:
 -                         if isinstance(chunk.delta.message.content, list):
 -                             for content in chunk.delta.message.content:
 -                                 response += content.data
 -                         else:
 -                             response += chunk.delta.message.content
 - 
 -                     if chunk.delta.usage:
 -                         increase_usage(llm_usage, chunk.delta.usage)
 -                         current_llm_usage = chunk.delta.usage
 - 
 -                     yield chunk
 -             else:
 -                 result: LLMResult = chunks
 -                 # check if there is any tool call
 -                 if self.check_blocking_tool_calls(result):
 -                     function_call_state = True
 -                     tool_calls.extend(self.extract_blocking_tool_calls(result))
 -                     tool_call_names = ';'.join([tool_call[1] for tool_call in tool_calls])
 -                     try:
 -                         tool_call_inputs = json.dumps({
 -                             tool_call[1]: tool_call[2] for tool_call in tool_calls
 -                         }, ensure_ascii=False)
 -                     except json.JSONDecodeError as e:
 -                         # ensure ascii to avoid encoding error
 -                         tool_call_inputs = json.dumps({
 -                             tool_call[1]: tool_call[2] for tool_call in tool_calls
 -                         })
 - 
 -                 if result.usage:
 -                     increase_usage(llm_usage, result.usage)
 -                     current_llm_usage = result.usage
 - 
 -                 if result.message and result.message.content:
 -                     if isinstance(result.message.content, list):
 -                         for content in result.message.content:
 -                             response += content.data
 -                     else:
 -                         response += result.message.content
 - 
 -                 if not result.message.content:
 -                     result.message.content = ''
 - 
 -                 yield LLMResultChunk(
 -                     model=model_instance.model,
 -                     prompt_messages=result.prompt_messages,
 -                     system_fingerprint=result.system_fingerprint,
 -                     delta=LLMResultChunkDelta(
 -                         index=0,
 -                         message=result.message,
 -                         usage=result.usage,
 -                     )
 -                 )
 - 
 -             if tool_calls:
 -                 prompt_messages.append(AssistantPromptMessage(
 -                     content='',
 -                     name='',
 -                     tool_calls=[AssistantPromptMessage.ToolCall(
 -                         id=tool_call[0],
 -                         type='function',
 -                         function=AssistantPromptMessage.ToolCall.ToolCallFunction(
 -                             name=tool_call[1],
 -                             arguments=json.dumps(tool_call[2], ensure_ascii=False)
 -                         )
 -                     ) for tool_call in tool_calls]
 -                 ))
 - 
 -             # save thought
 -             self.save_agent_thought(
 -                 agent_thought=agent_thought, 
 -                 tool_name=tool_call_names,
 -                 tool_input=tool_call_inputs,
 -                 thought=response,
 -                 observation=None,
 -                 answer=response,
 -                 messages_ids=[],
 -                 llm_usage=current_llm_usage
 -             )
 - 
 -             self.queue_manager.publish_agent_thought(agent_thought, PublishFrom.APPLICATION_MANAGER)
 -             
 -             final_answer += response + '\n'
 - 
 -             # update prompt messages
 -             if response.strip():
 -                 prompt_messages.append(AssistantPromptMessage(
 -                     content=response,
 -                 ))
 -             
 -             # call tools
 -             tool_responses = []
 -             for tool_call_id, tool_call_name, tool_call_args in tool_calls:
 -                 tool_instance = tool_instances.get(tool_call_name)
 -                 if not tool_instance:
 -                     tool_response = {
 -                         "tool_call_id": tool_call_id,
 -                         "tool_call_name": tool_call_name,
 -                         "tool_response": f"there is not a tool named {tool_call_name}"
 -                     }
 -                     tool_responses.append(tool_response)
 -                 else:
 -                     # invoke tool
 -                     error_response = None
 -                     try:
 -                         tool_invoke_message = tool_instance.invoke(
 -                             user_id=self.user_id, 
 -                             tool_paramters=tool_call_args, 
 -                         )
 -                         # transform tool invoke message to get LLM friendly message
 -                         tool_invoke_message = self.transform_tool_invoke_messages(tool_invoke_message)
 -                         # extract binary data from tool invoke message
 -                         binary_files = self.extract_tool_response_binary(tool_invoke_message)
 -                         # create message file
 -                         message_files = self.create_message_files(binary_files)
 -                         # publish files
 -                         for message_file, save_as in message_files:
 -                             if save_as:
 -                                 self.variables_pool.set_file(tool_name=tool_call_name, value=message_file.id, name=save_as)
 - 
 -                             # publish message file
 -                             self.queue_manager.publish_message_file(message_file, PublishFrom.APPLICATION_MANAGER)
 -                             # add message file ids
 -                             message_file_ids.append(message_file.id)
 -                             
 -                     except ToolProviderCredentialValidationError as e:
 -                         error_response = f"Plese check your tool provider credentials"
 -                     except (
 -                         ToolNotFoundError, ToolNotSupportedError, ToolProviderNotFoundError
 -                     ) as e:
 -                         error_response = f"there is not a tool named {tool_call_name}"
 -                     except (
 -                         ToolParamterValidationError
 -                     ) as e:
 -                         error_response = f"tool paramters validation error: {e}, please check your tool paramters"
 -                     except ToolInvokeError as e:
 -                         error_response = f"tool invoke error: {e}"
 -                     except Exception as e:
 -                         error_response = f"unknown error: {e}"
 - 
 -                     if error_response:
 -                         observation = error_response
 -                         tool_response = {
 -                             "tool_call_id": tool_call_id,
 -                             "tool_call_name": tool_call_name,
 -                             "tool_response": error_response
 -                         }
 -                         tool_responses.append(tool_response)
 -                     else:
 -                         observation = self._convert_tool_response_to_str(tool_invoke_message)
 -                         tool_response = {
 -                             "tool_call_id": tool_call_id,
 -                             "tool_call_name": tool_call_name,
 -                             "tool_response": observation
 -                         }
 -                         tool_responses.append(tool_response)
 - 
 -                 prompt_messages = self.organize_prompt_messages(
 -                     prompt_template=prompt_template,
 -                     query=None,
 -                     tool_call_id=tool_call_id,
 -                     tool_call_name=tool_call_name,
 -                     tool_response=tool_response['tool_response'],
 -                     prompt_messages=prompt_messages,
 -                 )
 - 
 -             if len(tool_responses) > 0:
 -                 # save agent thought
 -                 self.save_agent_thought(
 -                     agent_thought=agent_thought, 
 -                     tool_name=None,
 -                     tool_input=None,
 -                     thought=None, 
 -                     observation=tool_response['tool_response'], 
 -                     answer=None,
 -                     messages_ids=message_file_ids
 -                 )
 -                 self.queue_manager.publish_agent_thought(agent_thought, PublishFrom.APPLICATION_MANAGER)
 - 
 -             # update prompt tool
 -             for prompt_tool in prompt_messages_tools:
 -                 self.update_prompt_message_tool(tool_instances[prompt_tool.name], prompt_tool)
 - 
 -             iteration_step += 1
 - 
 -         self.update_db_variables(self.variables_pool, self.db_variables_pool)
 -         # publish end event
 -         self.queue_manager.publish_message_end(LLMResult(
 -             model=model_instance.model,
 -             prompt_messages=prompt_messages,
 -             message=AssistantPromptMessage(
 -                 content=final_answer,
 -             ),
 -             usage=llm_usage['usage'] if llm_usage['usage'] else LLMUsage.empty_usage(),
 -             system_fingerprint=''
 -         ), PublishFrom.APPLICATION_MANAGER)
 - 
 -     def check_tool_calls(self, llm_result_chunk: LLMResultChunk) -> bool:
 -         """
 -         Check if there is any tool call in llm result chunk
 -         """
 -         if llm_result_chunk.delta.message.tool_calls:
 -             return True
 -         return False
 -     
 -     def check_blocking_tool_calls(self, llm_result: LLMResult) -> bool:
 -         """
 -         Check if there is any blocking tool call in llm result
 -         """
 -         if llm_result.message.tool_calls:
 -             return True
 -         return False
 - 
 -     def extract_tool_calls(self, llm_result_chunk: LLMResultChunk) -> Union[None, List[Tuple[str, str, Dict[str, Any]]]]:
 -         """
 -         Extract tool calls from llm result chunk
 - 
 -         Returns:
 -             List[Tuple[str, str, Dict[str, Any]]]: [(tool_call_id, tool_call_name, tool_call_args)]
 -         """
 -         tool_calls = []
 -         for prompt_message in llm_result_chunk.delta.message.tool_calls:
 -             tool_calls.append((
 -                 prompt_message.id,
 -                 prompt_message.function.name,
 -                 json.loads(prompt_message.function.arguments),
 -             ))
 - 
 -         return tool_calls
 -     
 -     def extract_blocking_tool_calls(self, llm_result: LLMResult) -> Union[None, List[Tuple[str, str, Dict[str, Any]]]]:
 -         """
 -         Extract blocking tool calls from llm result
 - 
 -         Returns:
 -             List[Tuple[str, str, Dict[str, Any]]]: [(tool_call_id, tool_call_name, tool_call_args)]
 -         """
 -         tool_calls = []
 -         for prompt_message in llm_result.message.tool_calls:
 -             tool_calls.append((
 -                 prompt_message.id,
 -                 prompt_message.function.name,
 -                 json.loads(prompt_message.function.arguments),
 -             ))
 - 
 -         return tool_calls
 - 
 -     def organize_prompt_messages(self, prompt_template: str,
 -                                  query: str = None, 
 -                                  tool_call_id: str = None, tool_call_name: str = None, tool_response: str = None,
 -                                  prompt_messages: list[PromptMessage] = None
 -                                  ) -> list[PromptMessage]:
 -         """
 -         Organize prompt messages
 -         """
 -         
 -         if not prompt_messages:
 -             prompt_messages = [
 -                 SystemPromptMessage(content=prompt_template),
 -                 UserPromptMessage(content=query),
 -             ]
 -         else:
 -             if tool_response:
 -                 prompt_messages = prompt_messages.copy()
 -                 prompt_messages.append(
 -                     ToolPromptMessage(
 -                         content=tool_response,
 -                         tool_call_id=tool_call_id,
 -                         name=tool_call_name,
 -                     )
 -                 )
 - 
 -         return prompt_messages
 
 
  |