You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

cached_embedding.py 6.8KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148
  1. import base64
  2. import logging
  3. from typing import Any, cast
  4. import numpy as np
  5. from sqlalchemy.exc import IntegrityError
  6. from configs import dify_config
  7. from core.entities.embedding_type import EmbeddingInputType
  8. from core.model_manager import ModelInstance
  9. from core.model_runtime.entities.model_entities import ModelPropertyKey
  10. from core.model_runtime.model_providers.__base.text_embedding_model import TextEmbeddingModel
  11. from core.rag.embedding.embedding_base import Embeddings
  12. from extensions.ext_database import db
  13. from extensions.ext_redis import redis_client
  14. from libs import helper
  15. from models.dataset import Embedding
  16. logger = logging.getLogger(__name__)
  17. class CacheEmbedding(Embeddings):
  18. def __init__(self, model_instance: ModelInstance, user: str | None = None):
  19. self._model_instance = model_instance
  20. self._user = user
  21. def embed_documents(self, texts: list[str]) -> list[list[float]]:
  22. """Embed search docs in batches of 10."""
  23. # use doc embedding cache or store if not exists
  24. text_embeddings: list[Any] = [None for _ in range(len(texts))]
  25. embedding_queue_indices = []
  26. for i, text in enumerate(texts):
  27. hash = helper.generate_text_hash(text)
  28. embedding = (
  29. db.session.query(Embedding)
  30. .filter_by(
  31. model_name=self._model_instance.model, hash=hash, provider_name=self._model_instance.provider
  32. )
  33. .first()
  34. )
  35. if embedding:
  36. text_embeddings[i] = embedding.get_embedding()
  37. else:
  38. embedding_queue_indices.append(i)
  39. # release database connection, because embedding may take a long time
  40. db.session.close()
  41. if embedding_queue_indices:
  42. embedding_queue_texts = [texts[i] for i in embedding_queue_indices]
  43. embedding_queue_embeddings = []
  44. try:
  45. model_type_instance = cast(TextEmbeddingModel, self._model_instance.model_type_instance)
  46. model_schema = model_type_instance.get_model_schema(
  47. self._model_instance.model, self._model_instance.credentials
  48. )
  49. max_chunks = (
  50. model_schema.model_properties[ModelPropertyKey.MAX_CHUNKS]
  51. if model_schema and ModelPropertyKey.MAX_CHUNKS in model_schema.model_properties
  52. else 1
  53. )
  54. for i in range(0, len(embedding_queue_texts), max_chunks):
  55. batch_texts = embedding_queue_texts[i : i + max_chunks]
  56. embedding_result = self._model_instance.invoke_text_embedding(
  57. texts=batch_texts, user=self._user, input_type=EmbeddingInputType.DOCUMENT
  58. )
  59. for vector in embedding_result.embeddings:
  60. try:
  61. # FIXME: type ignore for numpy here
  62. normalized_embedding = (vector / np.linalg.norm(vector)).tolist() # type: ignore
  63. # stackoverflow best way: https://stackoverflow.com/questions/20319813/how-to-check-list-containing-nan
  64. if np.isnan(normalized_embedding).any():
  65. # for issue #11827 float values are not json compliant
  66. logger.warning("Normalized embedding is nan: %s", normalized_embedding)
  67. continue
  68. embedding_queue_embeddings.append(normalized_embedding)
  69. except IntegrityError:
  70. db.session.rollback()
  71. except Exception:
  72. logger.exception("Failed transform embedding")
  73. cache_embeddings = []
  74. try:
  75. for i, n_embedding in zip(embedding_queue_indices, embedding_queue_embeddings):
  76. text_embeddings[i] = n_embedding
  77. hash = helper.generate_text_hash(texts[i])
  78. if hash not in cache_embeddings:
  79. embedding_cache = Embedding(
  80. model_name=self._model_instance.model,
  81. hash=hash,
  82. provider_name=self._model_instance.provider,
  83. )
  84. embedding_cache.set_embedding(n_embedding)
  85. db.session.add(embedding_cache)
  86. cache_embeddings.append(hash)
  87. db.session.commit()
  88. except IntegrityError:
  89. db.session.rollback()
  90. except Exception as ex:
  91. db.session.rollback()
  92. logger.exception("Failed to embed documents")
  93. raise ex
  94. return text_embeddings
  95. def embed_query(self, text: str) -> list[float]:
  96. """Embed query text."""
  97. # use doc embedding cache or store if not exists
  98. hash = helper.generate_text_hash(text)
  99. embedding_cache_key = f"{self._model_instance.provider}_{self._model_instance.model}_{hash}"
  100. embedding = redis_client.get(embedding_cache_key)
  101. if embedding:
  102. redis_client.expire(embedding_cache_key, 600)
  103. decoded_embedding = np.frombuffer(base64.b64decode(embedding), dtype="float")
  104. return [float(x) for x in decoded_embedding]
  105. try:
  106. embedding_result = self._model_instance.invoke_text_embedding(
  107. texts=[text], user=self._user, input_type=EmbeddingInputType.QUERY
  108. )
  109. embedding_results = embedding_result.embeddings[0]
  110. # FIXME: type ignore for numpy here
  111. embedding_results = (embedding_results / np.linalg.norm(embedding_results)).tolist() # type: ignore
  112. if np.isnan(embedding_results).any():
  113. raise ValueError("Normalized embedding is nan please try again")
  114. except Exception as ex:
  115. if dify_config.DEBUG:
  116. logger.exception("Failed to embed query text '%s...(%s chars)'", text[:10], len(text))
  117. raise ex
  118. try:
  119. # encode embedding to base64
  120. embedding_vector = np.array(embedding_results)
  121. vector_bytes = embedding_vector.tobytes()
  122. # Transform to Base64
  123. encoded_vector = base64.b64encode(vector_bytes)
  124. # Transform to string
  125. encoded_str = encoded_vector.decode("utf-8")
  126. redis_client.setex(embedding_cache_key, 600, encoded_str)
  127. except Exception as ex:
  128. if dify_config.DEBUG:
  129. logger.exception(
  130. "Failed to add embedding to redis for the text '%s...(%s chars)'", text[:10], len(text)
  131. )
  132. raise ex
  133. return embedding_results # type: ignore