You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
sino 8166a8caf5
feat: update llama3.1 parameters for openrouter (#6901)
1 年之前
..
configs fix(api/core/moderation/output_moderation.py): Fix config call. (#6769) 1 年之前
constants feat: Add support for i18n Turkish language (tr-TR) (#6886) 1 年之前
contexts Feat/environment variables in workflow (#6515) 1 年之前
controllers fix: Change API key authentication failure response code from 404 to 401 (#6885) 1 年之前
core feat: update llama3.1 parameters for openrouter (#6901) 1 年之前
docker feat: support Celery auto-scale (#6249) 1 年之前
events Feat/delete file when clean document (#5882) 1 年之前
extensions chore: update SQLAlchemy configuration with custom naming convention (#6854) 1 年之前
fields delete weight_type (#6865) 1 年之前
libs refactor(api): Switch to `dify_config` (#6750) 1 年之前
migrations chore: update SQLAlchemy configuration with custom naming convention (#6854) 1 年之前
models Fix/6615 40 varchar limit on DatasetCollectionBinding and Embedding model name (#6723) 1 年之前
schedule Feat/environment variables in workflow (#6515) 1 年之前
services chore: optimize asynchronous deletion performance of app related data (#6634) 1 年之前
tasks chore: optimize asynchronous workflow deletion performance of app related data (#6639) 1 年之前
templates feat: implement forgot password feature (#5534) 1 年之前
tests fix score threshold limit be None (#6900) 1 年之前
.dockerignore build: support Poetry for depencencies tool in api's Dockerfile (#5105) 1 年之前
.env.example chore: make prompt generator max tokens configurable (#6693) 1 年之前
Dockerfile chore: skip pip upgrade preparation in api dockerfile (#5999) 1 年之前
README.md Chores: add missing profile for middleware docker compose cmd and fix ssrf-proxy doc link (#6372) 1 年之前
app.py chore: Add processId field for metrics of threads/db-pool-stat/health (#6797) 1 年之前
commands.py refactor(api): Switch to `dify_config` (#6750) 1 年之前
poetry.lock support xinference tts (#6746) 1 年之前
poetry.toml build: initial support for poetry build tool (#4513) 1 年之前
pyproject.toml support xinference tts (#6746) 1 年之前

README.md

Dify Backend API

Usage

[!IMPORTANT] In the v0.6.12 release, we deprecated pip as the package management tool for Dify API Backend service and replaced it with poetry.

  1. Start the docker-compose stack

The backend require some middleware, including PostgreSQL, Redis, and Weaviate, which can be started together using docker-compose.

   cd ../docker
   cp middleware.env.example middleware.env
   # change the profile to other vector database if you are not using weaviate
   docker compose -f docker-compose.middleware.yaml --profile weaviate -p dify up -d
   cd ../api
  1. Copy .env.example to .env
  2. Generate a SECRET_KEY in the .env file.
   sed -i "/^SECRET_KEY=/c\SECRET_KEY=$(openssl rand -base64 42)" .env
   secret_key=$(openssl rand -base64 42)
   sed -i '' "/^SECRET_KEY=/c\\
   SECRET_KEY=${secret_key}" .env
  1. Create environment.

Dify API service uses Poetry to manage dependencies. You can execute poetry shell to activate the environment.

  1. Install dependencies
   poetry env use 3.10
   poetry install

In case of contributors missing to update dependencies for pyproject.toml, you can perform the following shell instead.

   poetry shell                                               # activate current environment
   poetry add $(cat requirements.txt)           # install dependencies of production and update pyproject.toml
   poetry add $(cat requirements-dev.txt) --group dev    # install dependencies of development and update pyproject.toml
  1. Run migrate

Before the first launch, migrate the database to the latest version.

   poetry run python -m flask db upgrade
  1. Start backend
   poetry run python -m flask run --host 0.0.0.0 --port=5001 --debug
  1. Start Dify web service.
  2. Setup your application by visiting http://localhost:3000
  3. If you need to debug local async processing, please start the worker service.
   poetry run python -m celery -A app.celery worker -P gevent -c 1 --loglevel INFO -Q dataset,generation,mail,ops_trace,app_deletion

The started celery app handles the async tasks, e.g. dataset importing and documents indexing.

Testing

  1. Install dependencies for both the backend and the test environment
   poetry install --with dev
  1. Run the tests locally with mocked system environment variables in tool.pytest_env section in pyproject.toml
   cd ../
   poetry run -C api bash dev/pytest/pytest_all_tests.sh