You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

segment.py 17KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400
  1. from flask import request
  2. from flask_login import current_user # type: ignore
  3. from flask_restful import marshal, reqparse # type: ignore
  4. from werkzeug.exceptions import NotFound
  5. from controllers.service_api import api
  6. from controllers.service_api.app.error import ProviderNotInitializeError
  7. from controllers.service_api.wraps import (
  8. DatasetApiResource,
  9. cloud_edition_billing_knowledge_limit_check,
  10. cloud_edition_billing_resource_check,
  11. )
  12. from core.errors.error import LLMBadRequestError, ProviderTokenNotInitError
  13. from core.model_manager import ModelManager
  14. from core.model_runtime.entities.model_entities import ModelType
  15. from extensions.ext_database import db
  16. from fields.segment_fields import child_chunk_fields, segment_fields
  17. from models.dataset import Dataset
  18. from services.dataset_service import DatasetService, DocumentService, SegmentService
  19. from services.entities.knowledge_entities.knowledge_entities import SegmentUpdateArgs
  20. from services.errors.chunk import (
  21. ChildChunkDeleteIndexError,
  22. ChildChunkIndexingError,
  23. )
  24. from services.errors.chunk import (
  25. ChildChunkDeleteIndexError as ChildChunkDeleteIndexServiceError,
  26. )
  27. from services.errors.chunk import (
  28. ChildChunkIndexingError as ChildChunkIndexingServiceError,
  29. )
  30. class SegmentApi(DatasetApiResource):
  31. """Resource for segments."""
  32. @cloud_edition_billing_resource_check("vector_space", "dataset")
  33. @cloud_edition_billing_knowledge_limit_check("add_segment", "dataset")
  34. def post(self, tenant_id, dataset_id, document_id):
  35. """Create single segment."""
  36. # check dataset
  37. dataset_id = str(dataset_id)
  38. tenant_id = str(tenant_id)
  39. dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
  40. if not dataset:
  41. raise NotFound("Dataset not found.")
  42. # check document
  43. document_id = str(document_id)
  44. document = DocumentService.get_document(dataset.id, document_id)
  45. if not document:
  46. raise NotFound("Document not found.")
  47. if document.indexing_status != "completed":
  48. raise NotFound("Document is not completed.")
  49. if not document.enabled:
  50. raise NotFound("Document is disabled.")
  51. # check embedding model setting
  52. if dataset.indexing_technique == "high_quality":
  53. try:
  54. model_manager = ModelManager()
  55. model_manager.get_model_instance(
  56. tenant_id=current_user.current_tenant_id,
  57. provider=dataset.embedding_model_provider,
  58. model_type=ModelType.TEXT_EMBEDDING,
  59. model=dataset.embedding_model,
  60. )
  61. except LLMBadRequestError:
  62. raise ProviderNotInitializeError(
  63. "No Embedding Model available. Please configure a valid provider in the Settings -> Model Provider."
  64. )
  65. except ProviderTokenNotInitError as ex:
  66. raise ProviderNotInitializeError(ex.description)
  67. # validate args
  68. parser = reqparse.RequestParser()
  69. parser.add_argument("segments", type=list, required=False, nullable=True, location="json")
  70. args = parser.parse_args()
  71. if args["segments"] is not None:
  72. for args_item in args["segments"]:
  73. SegmentService.segment_create_args_validate(args_item, document)
  74. segments = SegmentService.multi_create_segment(args["segments"], document, dataset)
  75. return {"data": marshal(segments, segment_fields), "doc_form": document.doc_form}, 200
  76. else:
  77. return {"error": "Segments is required"}, 400
  78. def get(self, tenant_id, dataset_id, document_id):
  79. """Get segments."""
  80. # check dataset
  81. dataset_id = str(dataset_id)
  82. tenant_id = str(tenant_id)
  83. page = request.args.get("page", default=1, type=int)
  84. limit = request.args.get("limit", default=20, type=int)
  85. dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
  86. if not dataset:
  87. raise NotFound("Dataset not found.")
  88. # check document
  89. document_id = str(document_id)
  90. document = DocumentService.get_document(dataset.id, document_id)
  91. if not document:
  92. raise NotFound("Document not found.")
  93. # check embedding model setting
  94. if dataset.indexing_technique == "high_quality":
  95. try:
  96. model_manager = ModelManager()
  97. model_manager.get_model_instance(
  98. tenant_id=current_user.current_tenant_id,
  99. provider=dataset.embedding_model_provider,
  100. model_type=ModelType.TEXT_EMBEDDING,
  101. model=dataset.embedding_model,
  102. )
  103. except LLMBadRequestError:
  104. raise ProviderNotInitializeError(
  105. "No Embedding Model available. Please configure a valid provider in the Settings -> Model Provider."
  106. )
  107. except ProviderTokenNotInitError as ex:
  108. raise ProviderNotInitializeError(ex.description)
  109. parser = reqparse.RequestParser()
  110. parser.add_argument("status", type=str, action="append", default=[], location="args")
  111. parser.add_argument("keyword", type=str, default=None, location="args")
  112. args = parser.parse_args()
  113. segments, total = SegmentService.get_segments(
  114. document_id=document_id,
  115. tenant_id=current_user.current_tenant_id,
  116. status_list=args["status"],
  117. keyword=args["keyword"],
  118. )
  119. response = {
  120. "data": marshal(segments, segment_fields),
  121. "doc_form": document.doc_form,
  122. "total": total,
  123. "has_more": len(segments) == limit,
  124. "limit": limit,
  125. "page": page,
  126. }
  127. return response, 200
  128. class DatasetSegmentApi(DatasetApiResource):
  129. def delete(self, tenant_id, dataset_id, document_id, segment_id):
  130. # check dataset
  131. dataset_id = str(dataset_id)
  132. tenant_id = str(tenant_id)
  133. dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
  134. if not dataset:
  135. raise NotFound("Dataset not found.")
  136. # check user's model setting
  137. DatasetService.check_dataset_model_setting(dataset)
  138. # check document
  139. document_id = str(document_id)
  140. document = DocumentService.get_document(dataset_id, document_id)
  141. if not document:
  142. raise NotFound("Document not found.")
  143. # check segment
  144. segment_id = str(segment_id)
  145. segment = SegmentService.get_segment_by_id(segment_id=segment_id, tenant_id=current_user.current_tenant_id)
  146. if not segment:
  147. raise NotFound("Segment not found.")
  148. SegmentService.delete_segment(segment, document, dataset)
  149. return {"result": "success"}, 200
  150. @cloud_edition_billing_resource_check("vector_space", "dataset")
  151. def post(self, tenant_id, dataset_id, document_id, segment_id):
  152. # check dataset
  153. dataset_id = str(dataset_id)
  154. tenant_id = str(tenant_id)
  155. dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
  156. if not dataset:
  157. raise NotFound("Dataset not found.")
  158. # check user's model setting
  159. DatasetService.check_dataset_model_setting(dataset)
  160. # check document
  161. document_id = str(document_id)
  162. document = DocumentService.get_document(dataset_id, document_id)
  163. if not document:
  164. raise NotFound("Document not found.")
  165. if dataset.indexing_technique == "high_quality":
  166. # check embedding model setting
  167. try:
  168. model_manager = ModelManager()
  169. model_manager.get_model_instance(
  170. tenant_id=current_user.current_tenant_id,
  171. provider=dataset.embedding_model_provider,
  172. model_type=ModelType.TEXT_EMBEDDING,
  173. model=dataset.embedding_model,
  174. )
  175. except LLMBadRequestError:
  176. raise ProviderNotInitializeError(
  177. "No Embedding Model available. Please configure a valid provider in the Settings -> Model Provider."
  178. )
  179. except ProviderTokenNotInitError as ex:
  180. raise ProviderNotInitializeError(ex.description)
  181. # check segment
  182. segment_id = str(segment_id)
  183. segment = SegmentService.get_segment_by_id(segment_id=segment_id, tenant_id=current_user.current_tenant_id)
  184. if not segment:
  185. raise NotFound("Segment not found.")
  186. # validate args
  187. parser = reqparse.RequestParser()
  188. parser.add_argument("segment", type=dict, required=False, nullable=True, location="json")
  189. args = parser.parse_args()
  190. updated_segment = SegmentService.update_segment(
  191. SegmentUpdateArgs(**args["segment"]), segment, document, dataset
  192. )
  193. return {"data": marshal(updated_segment, segment_fields), "doc_form": document.doc_form}, 200
  194. class ChildChunkApi(DatasetApiResource):
  195. """Resource for child chunks."""
  196. @cloud_edition_billing_resource_check("vector_space", "dataset")
  197. @cloud_edition_billing_knowledge_limit_check("add_segment", "dataset")
  198. def post(self, tenant_id, dataset_id, document_id, segment_id):
  199. """Create child chunk."""
  200. # check dataset
  201. dataset_id = str(dataset_id)
  202. tenant_id = str(tenant_id)
  203. dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
  204. if not dataset:
  205. raise NotFound("Dataset not found.")
  206. # check document
  207. document_id = str(document_id)
  208. document = DocumentService.get_document(dataset.id, document_id)
  209. if not document:
  210. raise NotFound("Document not found.")
  211. # check segment
  212. segment_id = str(segment_id)
  213. segment = SegmentService.get_segment_by_id(segment_id=segment_id, tenant_id=current_user.current_tenant_id)
  214. if not segment:
  215. raise NotFound("Segment not found.")
  216. # check embedding model setting
  217. if dataset.indexing_technique == "high_quality":
  218. try:
  219. model_manager = ModelManager()
  220. model_manager.get_model_instance(
  221. tenant_id=current_user.current_tenant_id,
  222. provider=dataset.embedding_model_provider,
  223. model_type=ModelType.TEXT_EMBEDDING,
  224. model=dataset.embedding_model,
  225. )
  226. except LLMBadRequestError:
  227. raise ProviderNotInitializeError(
  228. "No Embedding Model available. Please configure a valid provider in the Settings -> Model Provider."
  229. )
  230. except ProviderTokenNotInitError as ex:
  231. raise ProviderNotInitializeError(ex.description)
  232. # validate args
  233. parser = reqparse.RequestParser()
  234. parser.add_argument("content", type=str, required=True, nullable=False, location="json")
  235. args = parser.parse_args()
  236. try:
  237. child_chunk = SegmentService.create_child_chunk(args.get("content"), segment, document, dataset)
  238. except ChildChunkIndexingServiceError as e:
  239. raise ChildChunkIndexingError(str(e))
  240. return {"data": marshal(child_chunk, child_chunk_fields)}, 200
  241. def get(self, tenant_id, dataset_id, document_id, segment_id):
  242. """Get child chunks."""
  243. # check dataset
  244. dataset_id = str(dataset_id)
  245. tenant_id = str(tenant_id)
  246. dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
  247. if not dataset:
  248. raise NotFound("Dataset not found.")
  249. # check document
  250. document_id = str(document_id)
  251. document = DocumentService.get_document(dataset.id, document_id)
  252. if not document:
  253. raise NotFound("Document not found.")
  254. # check segment
  255. segment_id = str(segment_id)
  256. segment = SegmentService.get_segment_by_id(segment_id=segment_id, tenant_id=current_user.current_tenant_id)
  257. if not segment:
  258. raise NotFound("Segment not found.")
  259. parser = reqparse.RequestParser()
  260. parser.add_argument("limit", type=int, default=20, location="args")
  261. parser.add_argument("keyword", type=str, default=None, location="args")
  262. parser.add_argument("page", type=int, default=1, location="args")
  263. args = parser.parse_args()
  264. page = args["page"]
  265. limit = min(args["limit"], 100)
  266. keyword = args["keyword"]
  267. child_chunks = SegmentService.get_child_chunks(segment_id, document_id, dataset_id, page, limit, keyword)
  268. return {
  269. "data": marshal(child_chunks.items, child_chunk_fields),
  270. "total": child_chunks.total,
  271. "total_pages": child_chunks.pages,
  272. "page": page,
  273. "limit": limit,
  274. }, 200
  275. class DatasetChildChunkApi(DatasetApiResource):
  276. """Resource for updating child chunks."""
  277. @cloud_edition_billing_knowledge_limit_check("add_segment", "dataset")
  278. def delete(self, tenant_id, dataset_id, document_id, segment_id, child_chunk_id):
  279. """Delete child chunk."""
  280. # check dataset
  281. dataset_id = str(dataset_id)
  282. tenant_id = str(tenant_id)
  283. dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
  284. if not dataset:
  285. raise NotFound("Dataset not found.")
  286. # check document
  287. document_id = str(document_id)
  288. document = DocumentService.get_document(dataset.id, document_id)
  289. if not document:
  290. raise NotFound("Document not found.")
  291. # check segment
  292. segment_id = str(segment_id)
  293. segment = SegmentService.get_segment_by_id(segment_id=segment_id, tenant_id=current_user.current_tenant_id)
  294. if not segment:
  295. raise NotFound("Segment not found.")
  296. # check child chunk
  297. child_chunk_id = str(child_chunk_id)
  298. child_chunk = SegmentService.get_child_chunk_by_id(
  299. child_chunk_id=child_chunk_id, tenant_id=current_user.current_tenant_id
  300. )
  301. if not child_chunk:
  302. raise NotFound("Child chunk not found.")
  303. try:
  304. SegmentService.delete_child_chunk(child_chunk, dataset)
  305. except ChildChunkDeleteIndexServiceError as e:
  306. raise ChildChunkDeleteIndexError(str(e))
  307. return {"result": "success"}, 200
  308. @cloud_edition_billing_resource_check("vector_space", "dataset")
  309. @cloud_edition_billing_knowledge_limit_check("add_segment", "dataset")
  310. def patch(self, tenant_id, dataset_id, document_id, segment_id, child_chunk_id):
  311. """Update child chunk."""
  312. # check dataset
  313. dataset_id = str(dataset_id)
  314. tenant_id = str(tenant_id)
  315. dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
  316. if not dataset:
  317. raise NotFound("Dataset not found.")
  318. # get document
  319. document = DocumentService.get_document(dataset_id, document_id)
  320. if not document:
  321. raise NotFound("Document not found.")
  322. # get segment
  323. segment = SegmentService.get_segment_by_id(segment_id=segment_id, tenant_id=current_user.current_tenant_id)
  324. if not segment:
  325. raise NotFound("Segment not found.")
  326. # get child chunk
  327. child_chunk = SegmentService.get_child_chunk_by_id(
  328. child_chunk_id=child_chunk_id, tenant_id=current_user.current_tenant_id
  329. )
  330. if not child_chunk:
  331. raise NotFound("Child chunk not found.")
  332. # validate args
  333. parser = reqparse.RequestParser()
  334. parser.add_argument("content", type=str, required=True, nullable=False, location="json")
  335. args = parser.parse_args()
  336. try:
  337. child_chunk = SegmentService.update_child_chunk(
  338. args.get("content"), child_chunk, segment, document, dataset
  339. )
  340. except ChildChunkIndexingServiceError as e:
  341. raise ChildChunkIndexingError(str(e))
  342. return {"data": marshal(child_chunk, child_chunk_fields)}, 200
  343. api.add_resource(SegmentApi, "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/segments")
  344. api.add_resource(
  345. DatasetSegmentApi, "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/segments/<uuid:segment_id>"
  346. )
  347. api.add_resource(
  348. ChildChunkApi, "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/segments/<uuid:segment_id>/child_chunks"
  349. )
  350. api.add_resource(
  351. DatasetChildChunkApi,
  352. "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/segments/<uuid:segment_id>/child_chunks/<uuid:child_chunk_id>",
  353. )