| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869 | 
							- import logging
 - import app
 - import datetime
 - import time
 - import click
 - from flask import current_app
 - from werkzeug.exceptions import NotFound
 - from core.index.index import IndexBuilder
 - from extensions.ext_database import db
 - from models.dataset import Dataset, DatasetQuery, Document, DatasetCollectionBinding
 - 
 - 
 - @app.celery.task(queue='dataset')
 - def clean_unused_datasets_task():
 -     click.echo(click.style('Start clean unused datasets indexes.', fg='green'))
 -     clean_days = int(current_app.config.get('CLEAN_DAY_SETTING'))
 -     start_at = time.perf_counter()
 -     thirty_days_ago = datetime.datetime.now() - datetime.timedelta(days=clean_days)
 -     page = 1
 -     while True:
 -         try:
 -             datasets = db.session.query(Dataset).filter(Dataset.created_at < thirty_days_ago) \
 -                 .order_by(Dataset.created_at.desc()).paginate(page=page, per_page=50)
 -         except NotFound:
 -             break
 -         page += 1
 -         for dataset in datasets:
 -             dataset_query = db.session.query(DatasetQuery).filter(
 -                 DatasetQuery.created_at > thirty_days_ago,
 -                 DatasetQuery.dataset_id == dataset.id
 -             ).all()
 -             if not dataset_query or len(dataset_query) == 0:
 -                 documents = db.session.query(Document).filter(
 -                     Document.dataset_id == dataset.id,
 -                     Document.indexing_status == 'completed',
 -                     Document.enabled == True,
 -                     Document.archived == False,
 -                     Document.updated_at > thirty_days_ago
 -                 ).all()
 -                 if not documents or len(documents) == 0:
 -                     try:
 -                         # remove index
 -                         vector_index = IndexBuilder.get_index(dataset, 'high_quality')
 -                         kw_index = IndexBuilder.get_index(dataset, 'economy')
 -                         # delete from vector index
 -                         if vector_index:
 -                             if dataset.collection_binding_id:
 -                                 vector_index.delete_by_group_id(dataset.id)
 -                             else:
 -                                 if dataset.collection_binding_id:
 -                                     vector_index.delete_by_group_id(dataset.id)
 -                                 else:
 -                                     vector_index.delete()
 -                         kw_index.delete()
 -                         # update document
 -                         update_params = {
 -                             Document.enabled: False
 -                         }
 - 
 -                         Document.query.filter_by(dataset_id=dataset.id).update(update_params)
 -                         db.session.commit()
 -                         click.echo(click.style('Cleaned unused dataset {} from db success!'.format(dataset.id),
 -                                                fg='green'))
 -                     except Exception as e:
 -                         click.echo(
 -                             click.style('clean dataset index error: {} {}'.format(e.__class__.__name__, str(e)),
 -                                         fg='red'))
 -     end_at = time.perf_counter()
 -     click.echo(click.style('Cleaned unused dataset from db success latency: {}'.format(end_at - start_at), fg='green'))
 
 
  |