Você não pode selecionar mais de 25 tópicos Os tópicos devem começar com uma letra ou um número, podem incluir traços ('-') e podem ter até 35 caracteres.
-LAN- 55c2b61921
fix(api/fields/workflow_fields.py): Add check in environment variables (#6621)
1 ano atrás
..
configs bump to 0.6.15 (#6592) 1 ano atrás
constants Feat/environment variables in workflow (#6515) 1 ano atrás
contexts Feat/environment variables in workflow (#6515) 1 ano atrás
controllers Feat/user session id search (#6638) 1 ano atrás
core Add support of tool-call for model provider "hunyuan" (#6656) 1 ano atrás
docker fix: kill signal is not passed to the main process (#6159) 1 ano atrás
events Feat/delete file when clean document (#5882) 1 ano atrás
extensions fix tencent_cos_storage image-preview error is not a byte (#6652) 1 ano atrás
fields fix(api/fields/workflow_fields.py): Add check in environment variables (#6621) 1 ano atrás
libs fix(api/services/app_generate_service.py): Remove wrong type hints. (#6535) 1 ano atrás
migrations Fix/6615 40 varchar limit on model name (#6623) 1 ano atrás
models Fix/6615 40 varchar limit on model name (#6623) 1 ano atrás
schedule Feat/environment variables in workflow (#6515) 1 ano atrás
services chore: optimize asynchronous deletion performance of app related data (#6634) 1 ano atrás
tasks chore: optimize asynchronous workflow deletion performance of app related data (#6639) 1 ano atrás
templates feat: implement forgot password feature (#5534) 1 ano atrás
tests fix(segments): Support NoneType. (#6581) 1 ano atrás
.dockerignore build: support Poetry for depencencies tool in api's Dockerfile (#5105) 1 ano atrás
.env.example update celery beat scheduler time to env (#6352) 1 ano atrás
Dockerfile chore: skip pip upgrade preparation in api dockerfile (#5999) 1 ano atrás
README.md Chores: add missing profile for middleware docker compose cmd and fix ssrf-proxy doc link (#6372) 1 ano atrás
app.py Feat/environment variables in workflow (#6515) 1 ano atrás
commands.py feat: support AnalyticDB vector store (#5586) 1 ano atrás
poetry.lock Feat/delete single dataset retrival (#6570) 1 ano atrás
poetry.toml build: initial support for poetry build tool (#4513) 1 ano atrás
pyproject.toml Feat/delete single dataset retrival (#6570) 1 ano atrás

README.md

Dify Backend API

Usage

[!IMPORTANT] In the v0.6.12 release, we deprecated pip as the package management tool for Dify API Backend service and replaced it with poetry.

  1. Start the docker-compose stack

The backend require some middleware, including PostgreSQL, Redis, and Weaviate, which can be started together using docker-compose.

   cd ../docker
   cp middleware.env.example middleware.env
   # change the profile to other vector database if you are not using weaviate
   docker compose -f docker-compose.middleware.yaml --profile weaviate -p dify up -d
   cd ../api
  1. Copy .env.example to .env
  2. Generate a SECRET_KEY in the .env file.
   sed -i "/^SECRET_KEY=/c\SECRET_KEY=$(openssl rand -base64 42)" .env
   secret_key=$(openssl rand -base64 42)
   sed -i '' "/^SECRET_KEY=/c\\
   SECRET_KEY=${secret_key}" .env
  1. Create environment.

Dify API service uses Poetry to manage dependencies. You can execute poetry shell to activate the environment.

  1. Install dependencies
   poetry env use 3.10
   poetry install

In case of contributors missing to update dependencies for pyproject.toml, you can perform the following shell instead.

   poetry shell                                               # activate current environment
   poetry add $(cat requirements.txt)           # install dependencies of production and update pyproject.toml
   poetry add $(cat requirements-dev.txt) --group dev    # install dependencies of development and update pyproject.toml
  1. Run migrate

Before the first launch, migrate the database to the latest version.

   poetry run python -m flask db upgrade
  1. Start backend
   poetry run python -m flask run --host 0.0.0.0 --port=5001 --debug
  1. Start Dify web service.
  2. Setup your application by visiting http://localhost:3000
  3. If you need to debug local async processing, please start the worker service.
   poetry run python -m celery -A app.celery worker -P gevent -c 1 --loglevel INFO -Q dataset,generation,mail,ops_trace,app_deletion

The started celery app handles the async tasks, e.g. dataset importing and documents indexing.

Testing

  1. Install dependencies for both the backend and the test environment
   poetry install --with dev
  1. Run the tests locally with mocked system environment variables in tool.pytest_env section in pyproject.toml
   cd ../
   poetry run -C api bash dev/pytest/pytest_all_tests.sh