Nevar pievienot vairāk kā 25 tēmas Tēmai ir jāsākas ar burtu vai ciparu, tā var saturēt domu zīmes ('-') un var būt līdz 35 simboliem gara.

document.py 25KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588
  1. import json
  2. from flask import request
  3. from flask_restful import marshal, reqparse
  4. from sqlalchemy import desc, select
  5. from werkzeug.exceptions import Forbidden, NotFound
  6. import services
  7. from controllers.common.errors import FilenameNotExistsError
  8. from controllers.service_api import api
  9. from controllers.service_api.app.error import (
  10. FileTooLargeError,
  11. NoFileUploadedError,
  12. ProviderNotInitializeError,
  13. TooManyFilesError,
  14. UnsupportedFileTypeError,
  15. )
  16. from controllers.service_api.dataset.error import (
  17. ArchivedDocumentImmutableError,
  18. DocumentIndexingError,
  19. InvalidMetadataError,
  20. )
  21. from controllers.service_api.wraps import (
  22. DatasetApiResource,
  23. cloud_edition_billing_rate_limit_check,
  24. cloud_edition_billing_resource_check,
  25. )
  26. from core.errors.error import ProviderTokenNotInitError
  27. from extensions.ext_database import db
  28. from fields.document_fields import document_fields, document_status_fields
  29. from libs.login import current_user
  30. from models.dataset import Dataset, Document, DocumentSegment
  31. from services.dataset_service import DatasetService, DocumentService
  32. from services.entities.knowledge_entities.knowledge_entities import KnowledgeConfig
  33. from services.file_service import FileService
  34. class DocumentAddByTextApi(DatasetApiResource):
  35. """Resource for documents."""
  36. @cloud_edition_billing_resource_check("vector_space", "dataset")
  37. @cloud_edition_billing_resource_check("documents", "dataset")
  38. @cloud_edition_billing_rate_limit_check("knowledge", "dataset")
  39. def post(self, tenant_id, dataset_id):
  40. """Create document by text."""
  41. parser = reqparse.RequestParser()
  42. parser.add_argument("name", type=str, required=True, nullable=False, location="json")
  43. parser.add_argument("text", type=str, required=True, nullable=False, location="json")
  44. parser.add_argument("process_rule", type=dict, required=False, nullable=True, location="json")
  45. parser.add_argument("original_document_id", type=str, required=False, location="json")
  46. parser.add_argument("doc_form", type=str, default="text_model", required=False, nullable=False, location="json")
  47. parser.add_argument(
  48. "doc_language", type=str, default="English", required=False, nullable=False, location="json"
  49. )
  50. parser.add_argument(
  51. "indexing_technique", type=str, choices=Dataset.INDEXING_TECHNIQUE_LIST, nullable=False, location="json"
  52. )
  53. parser.add_argument("retrieval_model", type=dict, required=False, nullable=True, location="json")
  54. parser.add_argument("embedding_model", type=str, required=False, nullable=True, location="json")
  55. parser.add_argument("embedding_model_provider", type=str, required=False, nullable=True, location="json")
  56. args = parser.parse_args()
  57. dataset_id = str(dataset_id)
  58. tenant_id = str(tenant_id)
  59. dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
  60. if not dataset:
  61. raise ValueError("Dataset does not exist.")
  62. if not dataset.indexing_technique and not args["indexing_technique"]:
  63. raise ValueError("indexing_technique is required.")
  64. text = args.get("text")
  65. name = args.get("name")
  66. if text is None or name is None:
  67. raise ValueError("Both 'text' and 'name' must be non-null values.")
  68. if args.get("embedding_model_provider"):
  69. DatasetService.check_embedding_model_setting(
  70. tenant_id, args.get("embedding_model_provider"), args.get("embedding_model")
  71. )
  72. if (
  73. args.get("retrieval_model")
  74. and args.get("retrieval_model").get("reranking_model")
  75. and args.get("retrieval_model").get("reranking_model").get("reranking_provider_name")
  76. ):
  77. DatasetService.check_reranking_model_setting(
  78. tenant_id,
  79. args.get("retrieval_model").get("reranking_model").get("reranking_provider_name"),
  80. args.get("retrieval_model").get("reranking_model").get("reranking_model_name"),
  81. )
  82. upload_file = FileService.upload_text(text=str(text), text_name=str(name))
  83. data_source = {
  84. "type": "upload_file",
  85. "info_list": {"data_source_type": "upload_file", "file_info_list": {"file_ids": [upload_file.id]}},
  86. }
  87. args["data_source"] = data_source
  88. knowledge_config = KnowledgeConfig(**args)
  89. # validate args
  90. DocumentService.document_create_args_validate(knowledge_config)
  91. try:
  92. documents, batch = DocumentService.save_document_with_dataset_id(
  93. dataset=dataset,
  94. knowledge_config=knowledge_config,
  95. account=current_user,
  96. dataset_process_rule=dataset.latest_process_rule if "process_rule" not in args else None,
  97. created_from="api",
  98. )
  99. except ProviderTokenNotInitError as ex:
  100. raise ProviderNotInitializeError(ex.description)
  101. document = documents[0]
  102. documents_and_batch_fields = {"document": marshal(document, document_fields), "batch": batch}
  103. return documents_and_batch_fields, 200
  104. class DocumentUpdateByTextApi(DatasetApiResource):
  105. """Resource for update documents."""
  106. @cloud_edition_billing_resource_check("vector_space", "dataset")
  107. @cloud_edition_billing_rate_limit_check("knowledge", "dataset")
  108. def post(self, tenant_id, dataset_id, document_id):
  109. """Update document by text."""
  110. parser = reqparse.RequestParser()
  111. parser.add_argument("name", type=str, required=False, nullable=True, location="json")
  112. parser.add_argument("text", type=str, required=False, nullable=True, location="json")
  113. parser.add_argument("process_rule", type=dict, required=False, nullable=True, location="json")
  114. parser.add_argument("doc_form", type=str, default="text_model", required=False, nullable=False, location="json")
  115. parser.add_argument(
  116. "doc_language", type=str, default="English", required=False, nullable=False, location="json"
  117. )
  118. parser.add_argument("retrieval_model", type=dict, required=False, nullable=False, location="json")
  119. args = parser.parse_args()
  120. dataset_id = str(dataset_id)
  121. tenant_id = str(tenant_id)
  122. dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
  123. if not dataset:
  124. raise ValueError("Dataset does not exist.")
  125. if (
  126. args.get("retrieval_model")
  127. and args.get("retrieval_model").get("reranking_model")
  128. and args.get("retrieval_model").get("reranking_model").get("reranking_provider_name")
  129. ):
  130. DatasetService.check_reranking_model_setting(
  131. tenant_id,
  132. args.get("retrieval_model").get("reranking_model").get("reranking_provider_name"),
  133. args.get("retrieval_model").get("reranking_model").get("reranking_model_name"),
  134. )
  135. # indexing_technique is already set in dataset since this is an update
  136. args["indexing_technique"] = dataset.indexing_technique
  137. if args["text"]:
  138. text = args.get("text")
  139. name = args.get("name")
  140. if text is None or name is None:
  141. raise ValueError("Both text and name must be strings.")
  142. upload_file = FileService.upload_text(text=str(text), text_name=str(name))
  143. data_source = {
  144. "type": "upload_file",
  145. "info_list": {"data_source_type": "upload_file", "file_info_list": {"file_ids": [upload_file.id]}},
  146. }
  147. args["data_source"] = data_source
  148. # validate args
  149. args["original_document_id"] = str(document_id)
  150. knowledge_config = KnowledgeConfig(**args)
  151. DocumentService.document_create_args_validate(knowledge_config)
  152. try:
  153. documents, batch = DocumentService.save_document_with_dataset_id(
  154. dataset=dataset,
  155. knowledge_config=knowledge_config,
  156. account=current_user,
  157. dataset_process_rule=dataset.latest_process_rule if "process_rule" not in args else None,
  158. created_from="api",
  159. )
  160. except ProviderTokenNotInitError as ex:
  161. raise ProviderNotInitializeError(ex.description)
  162. document = documents[0]
  163. documents_and_batch_fields = {"document": marshal(document, document_fields), "batch": batch}
  164. return documents_and_batch_fields, 200
  165. class DocumentAddByFileApi(DatasetApiResource):
  166. """Resource for documents."""
  167. @cloud_edition_billing_resource_check("vector_space", "dataset")
  168. @cloud_edition_billing_resource_check("documents", "dataset")
  169. @cloud_edition_billing_rate_limit_check("knowledge", "dataset")
  170. def post(self, tenant_id, dataset_id):
  171. """Create document by upload file."""
  172. args = {}
  173. if "data" in request.form:
  174. args = json.loads(request.form["data"])
  175. if "doc_form" not in args:
  176. args["doc_form"] = "text_model"
  177. if "doc_language" not in args:
  178. args["doc_language"] = "English"
  179. # get dataset info
  180. dataset_id = str(dataset_id)
  181. tenant_id = str(tenant_id)
  182. dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
  183. if not dataset:
  184. raise ValueError("Dataset does not exist.")
  185. indexing_technique = args.get("indexing_technique") or dataset.indexing_technique
  186. if not indexing_technique:
  187. raise ValueError("indexing_technique is required.")
  188. args["indexing_technique"] = indexing_technique
  189. if "embedding_model_provider" in args:
  190. DatasetService.check_embedding_model_setting(
  191. tenant_id, args["embedding_model_provider"], args["embedding_model"]
  192. )
  193. if (
  194. "retrieval_model" in args
  195. and args["retrieval_model"].get("reranking_model")
  196. and args["retrieval_model"].get("reranking_model").get("reranking_provider_name")
  197. ):
  198. DatasetService.check_reranking_model_setting(
  199. tenant_id,
  200. args["retrieval_model"].get("reranking_model").get("reranking_provider_name"),
  201. args["retrieval_model"].get("reranking_model").get("reranking_model_name"),
  202. )
  203. # save file info
  204. file = request.files["file"]
  205. # check file
  206. if "file" not in request.files:
  207. raise NoFileUploadedError()
  208. if len(request.files) > 1:
  209. raise TooManyFilesError()
  210. if not file.filename:
  211. raise FilenameNotExistsError
  212. upload_file = FileService.upload_file(
  213. filename=file.filename,
  214. content=file.read(),
  215. mimetype=file.mimetype,
  216. user=current_user,
  217. source="datasets",
  218. )
  219. data_source = {
  220. "type": "upload_file",
  221. "info_list": {"data_source_type": "upload_file", "file_info_list": {"file_ids": [upload_file.id]}},
  222. }
  223. args["data_source"] = data_source
  224. # validate args
  225. knowledge_config = KnowledgeConfig(**args)
  226. DocumentService.document_create_args_validate(knowledge_config)
  227. dataset_process_rule = dataset.latest_process_rule if "process_rule" not in args else None
  228. if not knowledge_config.original_document_id and not dataset_process_rule and not knowledge_config.process_rule:
  229. raise ValueError("process_rule is required.")
  230. try:
  231. documents, batch = DocumentService.save_document_with_dataset_id(
  232. dataset=dataset,
  233. knowledge_config=knowledge_config,
  234. account=dataset.created_by_account,
  235. dataset_process_rule=dataset_process_rule,
  236. created_from="api",
  237. )
  238. except ProviderTokenNotInitError as ex:
  239. raise ProviderNotInitializeError(ex.description)
  240. document = documents[0]
  241. documents_and_batch_fields = {"document": marshal(document, document_fields), "batch": batch}
  242. return documents_and_batch_fields, 200
  243. class DocumentUpdateByFileApi(DatasetApiResource):
  244. """Resource for update documents."""
  245. @cloud_edition_billing_resource_check("vector_space", "dataset")
  246. @cloud_edition_billing_rate_limit_check("knowledge", "dataset")
  247. def post(self, tenant_id, dataset_id, document_id):
  248. """Update document by upload file."""
  249. args = {}
  250. if "data" in request.form:
  251. args = json.loads(request.form["data"])
  252. if "doc_form" not in args:
  253. args["doc_form"] = "text_model"
  254. if "doc_language" not in args:
  255. args["doc_language"] = "English"
  256. # get dataset info
  257. dataset_id = str(dataset_id)
  258. tenant_id = str(tenant_id)
  259. dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
  260. if not dataset:
  261. raise ValueError("Dataset does not exist.")
  262. # indexing_technique is already set in dataset since this is an update
  263. args["indexing_technique"] = dataset.indexing_technique
  264. if "file" in request.files:
  265. # save file info
  266. file = request.files["file"]
  267. if len(request.files) > 1:
  268. raise TooManyFilesError()
  269. if not file.filename:
  270. raise FilenameNotExistsError
  271. try:
  272. upload_file = FileService.upload_file(
  273. filename=file.filename,
  274. content=file.read(),
  275. mimetype=file.mimetype,
  276. user=current_user,
  277. source="datasets",
  278. )
  279. except services.errors.file.FileTooLargeError as file_too_large_error:
  280. raise FileTooLargeError(file_too_large_error.description)
  281. except services.errors.file.UnsupportedFileTypeError:
  282. raise UnsupportedFileTypeError()
  283. data_source = {
  284. "type": "upload_file",
  285. "info_list": {"data_source_type": "upload_file", "file_info_list": {"file_ids": [upload_file.id]}},
  286. }
  287. args["data_source"] = data_source
  288. # validate args
  289. args["original_document_id"] = str(document_id)
  290. knowledge_config = KnowledgeConfig(**args)
  291. DocumentService.document_create_args_validate(knowledge_config)
  292. try:
  293. documents, batch = DocumentService.save_document_with_dataset_id(
  294. dataset=dataset,
  295. knowledge_config=knowledge_config,
  296. account=dataset.created_by_account,
  297. dataset_process_rule=dataset.latest_process_rule if "process_rule" not in args else None,
  298. created_from="api",
  299. )
  300. except ProviderTokenNotInitError as ex:
  301. raise ProviderNotInitializeError(ex.description)
  302. document = documents[0]
  303. documents_and_batch_fields = {"document": marshal(document, document_fields), "batch": document.batch}
  304. return documents_and_batch_fields, 200
  305. class DocumentDeleteApi(DatasetApiResource):
  306. @cloud_edition_billing_rate_limit_check("knowledge", "dataset")
  307. def delete(self, tenant_id, dataset_id, document_id):
  308. """Delete document."""
  309. document_id = str(document_id)
  310. dataset_id = str(dataset_id)
  311. tenant_id = str(tenant_id)
  312. # get dataset info
  313. dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
  314. if not dataset:
  315. raise ValueError("Dataset does not exist.")
  316. document = DocumentService.get_document(dataset.id, document_id)
  317. # 404 if document not found
  318. if document is None:
  319. raise NotFound("Document Not Exists.")
  320. # 403 if document is archived
  321. if DocumentService.check_archived(document):
  322. raise ArchivedDocumentImmutableError()
  323. try:
  324. # delete document
  325. DocumentService.delete_document(document)
  326. except services.errors.document.DocumentIndexingError:
  327. raise DocumentIndexingError("Cannot delete document during indexing.")
  328. return 204
  329. class DocumentListApi(DatasetApiResource):
  330. def get(self, tenant_id, dataset_id):
  331. dataset_id = str(dataset_id)
  332. tenant_id = str(tenant_id)
  333. page = request.args.get("page", default=1, type=int)
  334. limit = request.args.get("limit", default=20, type=int)
  335. search = request.args.get("keyword", default=None, type=str)
  336. dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
  337. if not dataset:
  338. raise NotFound("Dataset not found.")
  339. query = select(Document).filter_by(dataset_id=str(dataset_id), tenant_id=tenant_id)
  340. if search:
  341. search = f"%{search}%"
  342. query = query.filter(Document.name.like(search))
  343. query = query.order_by(desc(Document.created_at), desc(Document.position))
  344. paginated_documents = db.paginate(select=query, page=page, per_page=limit, max_per_page=100, error_out=False)
  345. documents = paginated_documents.items
  346. response = {
  347. "data": marshal(documents, document_fields),
  348. "has_more": len(documents) == limit,
  349. "limit": limit,
  350. "total": paginated_documents.total,
  351. "page": page,
  352. }
  353. return response
  354. class DocumentIndexingStatusApi(DatasetApiResource):
  355. def get(self, tenant_id, dataset_id, batch):
  356. dataset_id = str(dataset_id)
  357. batch = str(batch)
  358. tenant_id = str(tenant_id)
  359. # get dataset
  360. dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
  361. if not dataset:
  362. raise NotFound("Dataset not found.")
  363. # get documents
  364. documents = DocumentService.get_batch_documents(dataset_id, batch)
  365. if not documents:
  366. raise NotFound("Documents not found.")
  367. documents_status = []
  368. for document in documents:
  369. completed_segments = (
  370. db.session.query(DocumentSegment)
  371. .filter(
  372. DocumentSegment.completed_at.isnot(None),
  373. DocumentSegment.document_id == str(document.id),
  374. DocumentSegment.status != "re_segment",
  375. )
  376. .count()
  377. )
  378. total_segments = (
  379. db.session.query(DocumentSegment)
  380. .filter(DocumentSegment.document_id == str(document.id), DocumentSegment.status != "re_segment")
  381. .count()
  382. )
  383. # Create a dictionary with document attributes and additional fields
  384. document_dict = {
  385. "id": document.id,
  386. "indexing_status": "paused" if document.is_paused else document.indexing_status,
  387. "processing_started_at": document.processing_started_at,
  388. "parsing_completed_at": document.parsing_completed_at,
  389. "cleaning_completed_at": document.cleaning_completed_at,
  390. "splitting_completed_at": document.splitting_completed_at,
  391. "completed_at": document.completed_at,
  392. "paused_at": document.paused_at,
  393. "error": document.error,
  394. "stopped_at": document.stopped_at,
  395. "completed_segments": completed_segments,
  396. "total_segments": total_segments,
  397. }
  398. documents_status.append(marshal(document_dict, document_status_fields))
  399. data = {"data": documents_status}
  400. return data
  401. class DocumentDetailApi(DatasetApiResource):
  402. METADATA_CHOICES = {"all", "only", "without"}
  403. def get(self, tenant_id, dataset_id, document_id):
  404. dataset_id = str(dataset_id)
  405. document_id = str(document_id)
  406. dataset = self.get_dataset(dataset_id, tenant_id)
  407. document = DocumentService.get_document(dataset.id, document_id)
  408. if not document:
  409. raise NotFound("Document not found.")
  410. if document.tenant_id != str(tenant_id):
  411. raise Forbidden("No permission.")
  412. metadata = request.args.get("metadata", "all")
  413. if metadata not in self.METADATA_CHOICES:
  414. raise InvalidMetadataError(f"Invalid metadata value: {metadata}")
  415. if metadata == "only":
  416. response = {"id": document.id, "doc_type": document.doc_type, "doc_metadata": document.doc_metadata_details}
  417. elif metadata == "without":
  418. dataset_process_rules = DatasetService.get_process_rules(dataset_id)
  419. document_process_rules = document.dataset_process_rule.to_dict()
  420. data_source_info = document.data_source_detail_dict
  421. response = {
  422. "id": document.id,
  423. "position": document.position,
  424. "data_source_type": document.data_source_type,
  425. "data_source_info": data_source_info,
  426. "dataset_process_rule_id": document.dataset_process_rule_id,
  427. "dataset_process_rule": dataset_process_rules,
  428. "document_process_rule": document_process_rules,
  429. "name": document.name,
  430. "created_from": document.created_from,
  431. "created_by": document.created_by,
  432. "created_at": document.created_at.timestamp(),
  433. "tokens": document.tokens,
  434. "indexing_status": document.indexing_status,
  435. "completed_at": int(document.completed_at.timestamp()) if document.completed_at else None,
  436. "updated_at": int(document.updated_at.timestamp()) if document.updated_at else None,
  437. "indexing_latency": document.indexing_latency,
  438. "error": document.error,
  439. "enabled": document.enabled,
  440. "disabled_at": int(document.disabled_at.timestamp()) if document.disabled_at else None,
  441. "disabled_by": document.disabled_by,
  442. "archived": document.archived,
  443. "segment_count": document.segment_count,
  444. "average_segment_length": document.average_segment_length,
  445. "hit_count": document.hit_count,
  446. "display_status": document.display_status,
  447. "doc_form": document.doc_form,
  448. "doc_language": document.doc_language,
  449. }
  450. else:
  451. dataset_process_rules = DatasetService.get_process_rules(dataset_id)
  452. document_process_rules = document.dataset_process_rule.to_dict()
  453. data_source_info = document.data_source_detail_dict
  454. response = {
  455. "id": document.id,
  456. "position": document.position,
  457. "data_source_type": document.data_source_type,
  458. "data_source_info": data_source_info,
  459. "dataset_process_rule_id": document.dataset_process_rule_id,
  460. "dataset_process_rule": dataset_process_rules,
  461. "document_process_rule": document_process_rules,
  462. "name": document.name,
  463. "created_from": document.created_from,
  464. "created_by": document.created_by,
  465. "created_at": document.created_at.timestamp(),
  466. "tokens": document.tokens,
  467. "indexing_status": document.indexing_status,
  468. "completed_at": int(document.completed_at.timestamp()) if document.completed_at else None,
  469. "updated_at": int(document.updated_at.timestamp()) if document.updated_at else None,
  470. "indexing_latency": document.indexing_latency,
  471. "error": document.error,
  472. "enabled": document.enabled,
  473. "disabled_at": int(document.disabled_at.timestamp()) if document.disabled_at else None,
  474. "disabled_by": document.disabled_by,
  475. "archived": document.archived,
  476. "doc_type": document.doc_type,
  477. "doc_metadata": document.doc_metadata_details,
  478. "segment_count": document.segment_count,
  479. "average_segment_length": document.average_segment_length,
  480. "hit_count": document.hit_count,
  481. "display_status": document.display_status,
  482. "doc_form": document.doc_form,
  483. "doc_language": document.doc_language,
  484. }
  485. return response
  486. api.add_resource(
  487. DocumentAddByTextApi,
  488. "/datasets/<uuid:dataset_id>/document/create_by_text",
  489. "/datasets/<uuid:dataset_id>/document/create-by-text",
  490. )
  491. api.add_resource(
  492. DocumentAddByFileApi,
  493. "/datasets/<uuid:dataset_id>/document/create_by_file",
  494. "/datasets/<uuid:dataset_id>/document/create-by-file",
  495. )
  496. api.add_resource(
  497. DocumentUpdateByTextApi,
  498. "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/update_by_text",
  499. "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/update-by-text",
  500. )
  501. api.add_resource(
  502. DocumentUpdateByFileApi,
  503. "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/update_by_file",
  504. "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/update-by-file",
  505. )
  506. api.add_resource(DocumentDeleteApi, "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>")
  507. api.add_resource(DocumentListApi, "/datasets/<uuid:dataset_id>/documents")
  508. api.add_resource(DocumentIndexingStatusApi, "/datasets/<uuid:dataset_id>/documents/<string:batch>/indexing-status")
  509. api.add_resource(DocumentDetailApi, "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>")