| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218 | 
							- import json
 - import math
 - import re
 - import threading
 - from collections import Counter, defaultdict
 - from collections.abc import Generator, Mapping
 - from typing import Any, Optional, Union, cast
 - 
 - from flask import Flask, current_app
 - from sqlalchemy import Float, and_, or_, text
 - from sqlalchemy import cast as sqlalchemy_cast
 - 
 - from core.app.app_config.entities import (
 -     DatasetEntity,
 -     DatasetRetrieveConfigEntity,
 -     MetadataFilteringCondition,
 -     ModelConfig,
 - )
 - from core.app.entities.app_invoke_entities import InvokeFrom, ModelConfigWithCredentialsEntity
 - from core.callback_handler.index_tool_callback_handler import DatasetIndexToolCallbackHandler
 - from core.entities.agent_entities import PlanningStrategy
 - from core.entities.model_entities import ModelStatus
 - from core.memory.token_buffer_memory import TokenBufferMemory
 - from core.model_manager import ModelInstance, ModelManager
 - from core.model_runtime.entities.llm_entities import LLMResult, LLMUsage
 - from core.model_runtime.entities.message_entities import PromptMessage, PromptMessageRole, PromptMessageTool
 - from core.model_runtime.entities.model_entities import ModelFeature, ModelType
 - from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
 - from core.ops.entities.trace_entity import TraceTaskName
 - from core.ops.ops_trace_manager import TraceQueueManager, TraceTask
 - from core.ops.utils import measure_time
 - from core.prompt.advanced_prompt_transform import AdvancedPromptTransform
 - from core.prompt.entities.advanced_prompt_entities import ChatModelMessage, CompletionModelPromptTemplate
 - from core.prompt.simple_prompt_transform import ModelMode
 - from core.rag.data_post_processor.data_post_processor import DataPostProcessor
 - from core.rag.datasource.keyword.jieba.jieba_keyword_table_handler import JiebaKeywordTableHandler
 - from core.rag.datasource.retrieval_service import RetrievalService
 - from core.rag.entities.citation_metadata import RetrievalSourceMetadata
 - from core.rag.entities.context_entities import DocumentContext
 - from core.rag.entities.metadata_entities import Condition, MetadataCondition
 - from core.rag.index_processor.constant.index_type import IndexType
 - from core.rag.models.document import Document
 - from core.rag.rerank.rerank_type import RerankMode
 - from core.rag.retrieval.retrieval_methods import RetrievalMethod
 - from core.rag.retrieval.router.multi_dataset_function_call_router import FunctionCallMultiDatasetRouter
 - from core.rag.retrieval.router.multi_dataset_react_route import ReactMultiDatasetRouter
 - from core.rag.retrieval.template_prompts import (
 -     METADATA_FILTER_ASSISTANT_PROMPT_1,
 -     METADATA_FILTER_ASSISTANT_PROMPT_2,
 -     METADATA_FILTER_COMPLETION_PROMPT,
 -     METADATA_FILTER_SYSTEM_PROMPT,
 -     METADATA_FILTER_USER_PROMPT_1,
 -     METADATA_FILTER_USER_PROMPT_2,
 -     METADATA_FILTER_USER_PROMPT_3,
 - )
 - from core.tools.utils.dataset_retriever.dataset_retriever_base_tool import DatasetRetrieverBaseTool
 - from extensions.ext_database import db
 - from libs.json_in_md_parser import parse_and_check_json_markdown
 - from models.dataset import ChildChunk, Dataset, DatasetMetadata, DatasetQuery, DocumentSegment
 - from models.dataset import Document as DatasetDocument
 - from services.external_knowledge_service import ExternalDatasetService
 - 
 - default_retrieval_model: dict[str, Any] = {
 -     "search_method": RetrievalMethod.SEMANTIC_SEARCH.value,
 -     "reranking_enable": False,
 -     "reranking_model": {"reranking_provider_name": "", "reranking_model_name": ""},
 -     "top_k": 2,
 -     "score_threshold_enabled": False,
 - }
 - 
 - 
 - class DatasetRetrieval:
 -     def __init__(self, application_generate_entity=None):
 -         self.application_generate_entity = application_generate_entity
 - 
 -     def retrieve(
 -         self,
 -         app_id: str,
 -         user_id: str,
 -         tenant_id: str,
 -         model_config: ModelConfigWithCredentialsEntity,
 -         config: DatasetEntity,
 -         query: str,
 -         invoke_from: InvokeFrom,
 -         show_retrieve_source: bool,
 -         hit_callback: DatasetIndexToolCallbackHandler,
 -         message_id: str,
 -         memory: Optional[TokenBufferMemory] = None,
 -         inputs: Optional[Mapping[str, Any]] = None,
 -     ) -> Optional[str]:
 -         """
 -         Retrieve dataset.
 -         :param app_id: app_id
 -         :param user_id: user_id
 -         :param tenant_id: tenant id
 -         :param model_config: model config
 -         :param config: dataset config
 -         :param query: query
 -         :param invoke_from: invoke from
 -         :param show_retrieve_source: show retrieve source
 -         :param hit_callback: hit callback
 -         :param message_id: message id
 -         :param memory: memory
 -         :param inputs: inputs
 -         :return:
 -         """
 -         dataset_ids = config.dataset_ids
 -         if len(dataset_ids) == 0:
 -             return None
 -         retrieve_config = config.retrieve_config
 - 
 -         # check model is support tool calling
 -         model_type_instance = model_config.provider_model_bundle.model_type_instance
 -         model_type_instance = cast(LargeLanguageModel, model_type_instance)
 - 
 -         model_manager = ModelManager()
 -         model_instance = model_manager.get_model_instance(
 -             tenant_id=tenant_id, model_type=ModelType.LLM, provider=model_config.provider, model=model_config.model
 -         )
 - 
 -         # get model schema
 -         model_schema = model_type_instance.get_model_schema(
 -             model=model_config.model, credentials=model_config.credentials
 -         )
 - 
 -         if not model_schema:
 -             return None
 - 
 -         planning_strategy = PlanningStrategy.REACT_ROUTER
 -         features = model_schema.features
 -         if features:
 -             if ModelFeature.TOOL_CALL in features or ModelFeature.MULTI_TOOL_CALL in features:
 -                 planning_strategy = PlanningStrategy.ROUTER
 -         available_datasets = []
 -         for dataset_id in dataset_ids:
 -             # get dataset from dataset id
 -             dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
 - 
 -             # pass if dataset is not available
 -             if not dataset:
 -                 continue
 - 
 -             # pass if dataset is not available
 -             if dataset and dataset.available_document_count == 0 and dataset.provider != "external":
 -                 continue
 - 
 -             available_datasets.append(dataset)
 -         if inputs:
 -             inputs = {key: str(value) for key, value in inputs.items()}
 -         else:
 -             inputs = {}
 -         available_datasets_ids = [dataset.id for dataset in available_datasets]
 -         metadata_filter_document_ids, metadata_condition = self.get_metadata_filter_condition(
 -             available_datasets_ids,
 -             query,
 -             tenant_id,
 -             user_id,
 -             retrieve_config.metadata_filtering_mode,  # type: ignore
 -             retrieve_config.metadata_model_config,  # type: ignore
 -             retrieve_config.metadata_filtering_conditions,
 -             inputs,
 -         )
 - 
 -         all_documents = []
 -         user_from = "account" if invoke_from in {InvokeFrom.EXPLORE, InvokeFrom.DEBUGGER} else "end_user"
 -         if retrieve_config.retrieve_strategy == DatasetRetrieveConfigEntity.RetrieveStrategy.SINGLE:
 -             all_documents = self.single_retrieve(
 -                 app_id,
 -                 tenant_id,
 -                 user_id,
 -                 user_from,
 -                 available_datasets,
 -                 query,
 -                 model_instance,
 -                 model_config,
 -                 planning_strategy,
 -                 message_id,
 -                 metadata_filter_document_ids,
 -                 metadata_condition,
 -             )
 -         elif retrieve_config.retrieve_strategy == DatasetRetrieveConfigEntity.RetrieveStrategy.MULTIPLE:
 -             all_documents = self.multiple_retrieve(
 -                 app_id,
 -                 tenant_id,
 -                 user_id,
 -                 user_from,
 -                 available_datasets,
 -                 query,
 -                 retrieve_config.top_k or 0,
 -                 retrieve_config.score_threshold or 0,
 -                 retrieve_config.rerank_mode or "reranking_model",
 -                 retrieve_config.reranking_model,
 -                 retrieve_config.weights,
 -                 True if retrieve_config.reranking_enabled is None else retrieve_config.reranking_enabled,
 -                 message_id,
 -                 metadata_filter_document_ids,
 -                 metadata_condition,
 -             )
 - 
 -         dify_documents = [item for item in all_documents if item.provider == "dify"]
 -         external_documents = [item for item in all_documents if item.provider == "external"]
 -         document_context_list: list[DocumentContext] = []
 -         retrieval_resource_list: list[RetrievalSourceMetadata] = []
 -         # deal with external documents
 -         for item in external_documents:
 -             document_context_list.append(DocumentContext(content=item.page_content, score=item.metadata.get("score")))
 -             source = RetrievalSourceMetadata(
 -                 dataset_id=item.metadata.get("dataset_id"),
 -                 dataset_name=item.metadata.get("dataset_name"),
 -                 document_id=item.metadata.get("document_id") or item.metadata.get("title"),
 -                 document_name=item.metadata.get("title"),
 -                 data_source_type="external",
 -                 retriever_from=invoke_from.to_source(),
 -                 score=item.metadata.get("score"),
 -                 content=item.page_content,
 -             )
 -             retrieval_resource_list.append(source)
 -         # deal with dify documents
 -         if dify_documents:
 -             records = RetrievalService.format_retrieval_documents(dify_documents)
 -             if records:
 -                 for record in records:
 -                     segment = record.segment
 -                     if segment.answer:
 -                         document_context_list.append(
 -                             DocumentContext(
 -                                 content=f"question:{segment.get_sign_content()} answer:{segment.answer}",
 -                                 score=record.score,
 -                             )
 -                         )
 -                     else:
 -                         document_context_list.append(
 -                             DocumentContext(
 -                                 content=segment.get_sign_content(),
 -                                 score=record.score,
 -                             )
 -                         )
 -                 if show_retrieve_source:
 -                     for record in records:
 -                         segment = record.segment
 -                         dataset = db.session.query(Dataset).filter_by(id=segment.dataset_id).first()
 -                         document = (
 -                             db.session.query(DatasetDocument)
 -                             .filter(
 -                                 DatasetDocument.id == segment.document_id,
 -                                 DatasetDocument.enabled == True,
 -                                 DatasetDocument.archived == False,
 -                             )
 -                             .first()
 -                         )
 -                         if dataset and document:
 -                             source = RetrievalSourceMetadata(
 -                                 dataset_id=dataset.id,
 -                                 dataset_name=dataset.name,
 -                                 document_id=document.id,
 -                                 document_name=document.name,
 -                                 data_source_type=document.data_source_type,
 -                                 segment_id=segment.id,
 -                                 retriever_from=invoke_from.to_source(),
 -                                 score=record.score or 0.0,
 -                                 doc_metadata=document.doc_metadata,
 -                             )
 - 
 -                             if invoke_from.to_source() == "dev":
 -                                 source.hit_count = segment.hit_count
 -                                 source.word_count = segment.word_count
 -                                 source.segment_position = segment.position
 -                                 source.index_node_hash = segment.index_node_hash
 -                             if segment.answer:
 -                                 source.content = f"question:{segment.content} \nanswer:{segment.answer}"
 -                             else:
 -                                 source.content = segment.content
 -                             retrieval_resource_list.append(source)
 -         if hit_callback and retrieval_resource_list:
 -             retrieval_resource_list = sorted(retrieval_resource_list, key=lambda x: x.score or 0.0, reverse=True)
 -             for position, item in enumerate(retrieval_resource_list, start=1):
 -                 item.position = position
 -             hit_callback.return_retriever_resource_info(retrieval_resource_list)
 -         if document_context_list:
 -             document_context_list = sorted(document_context_list, key=lambda x: x.score or 0.0, reverse=True)
 -             return str("\n".join([document_context.content for document_context in document_context_list]))
 -         return ""
 - 
 -     def single_retrieve(
 -         self,
 -         app_id: str,
 -         tenant_id: str,
 -         user_id: str,
 -         user_from: str,
 -         available_datasets: list,
 -         query: str,
 -         model_instance: ModelInstance,
 -         model_config: ModelConfigWithCredentialsEntity,
 -         planning_strategy: PlanningStrategy,
 -         message_id: Optional[str] = None,
 -         metadata_filter_document_ids: Optional[dict[str, list[str]]] = None,
 -         metadata_condition: Optional[MetadataCondition] = None,
 -     ):
 -         tools = []
 -         for dataset in available_datasets:
 -             description = dataset.description
 -             if not description:
 -                 description = "useful for when you want to answer queries about the " + dataset.name
 - 
 -             description = description.replace("\n", "").replace("\r", "")
 -             message_tool = PromptMessageTool(
 -                 name=dataset.id,
 -                 description=description,
 -                 parameters={
 -                     "type": "object",
 -                     "properties": {},
 -                     "required": [],
 -                 },
 -             )
 -             tools.append(message_tool)
 -         dataset_id = None
 -         if planning_strategy == PlanningStrategy.REACT_ROUTER:
 -             react_multi_dataset_router = ReactMultiDatasetRouter()
 -             dataset_id = react_multi_dataset_router.invoke(
 -                 query, tools, model_config, model_instance, user_id, tenant_id
 -             )
 - 
 -         elif planning_strategy == PlanningStrategy.ROUTER:
 -             function_call_router = FunctionCallMultiDatasetRouter()
 -             dataset_id = function_call_router.invoke(query, tools, model_config, model_instance)
 - 
 -         if dataset_id:
 -             # get retrieval model config
 -             dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()
 -             if dataset:
 -                 results = []
 -                 if dataset.provider == "external":
 -                     external_documents = ExternalDatasetService.fetch_external_knowledge_retrieval(
 -                         tenant_id=dataset.tenant_id,
 -                         dataset_id=dataset_id,
 -                         query=query,
 -                         external_retrieval_parameters=dataset.retrieval_model,
 -                         metadata_condition=metadata_condition,
 -                     )
 -                     for external_document in external_documents:
 -                         document = Document(
 -                             page_content=external_document.get("content"),
 -                             metadata=external_document.get("metadata"),
 -                             provider="external",
 -                         )
 -                         if document.metadata is not None:
 -                             document.metadata["score"] = external_document.get("score")
 -                             document.metadata["title"] = external_document.get("title")
 -                             document.metadata["dataset_id"] = dataset_id
 -                             document.metadata["dataset_name"] = dataset.name
 -                         results.append(document)
 -                 else:
 -                     if metadata_condition and not metadata_filter_document_ids:
 -                         return []
 -                     document_ids_filter = None
 -                     if metadata_filter_document_ids:
 -                         document_ids = metadata_filter_document_ids.get(dataset.id, [])
 -                         if document_ids:
 -                             document_ids_filter = document_ids
 -                         else:
 -                             return []
 -                     retrieval_model_config = dataset.retrieval_model or default_retrieval_model
 - 
 -                     # get top k
 -                     top_k = retrieval_model_config["top_k"]
 -                     # get retrieval method
 -                     if dataset.indexing_technique == "economy":
 -                         retrieval_method = "keyword_search"
 -                     else:
 -                         retrieval_method = retrieval_model_config["search_method"]
 -                     # get reranking model
 -                     reranking_model = (
 -                         retrieval_model_config["reranking_model"]
 -                         if retrieval_model_config["reranking_enable"]
 -                         else None
 -                     )
 -                     # get score threshold
 -                     score_threshold = 0.0
 -                     score_threshold_enabled = retrieval_model_config.get("score_threshold_enabled")
 -                     if score_threshold_enabled:
 -                         score_threshold = retrieval_model_config.get("score_threshold", 0.0)
 - 
 -                     with measure_time() as timer:
 -                         results = RetrievalService.retrieve(
 -                             retrieval_method=retrieval_method,
 -                             dataset_id=dataset.id,
 -                             query=query,
 -                             top_k=top_k,
 -                             score_threshold=score_threshold,
 -                             reranking_model=reranking_model,
 -                             reranking_mode=retrieval_model_config.get("reranking_mode", "reranking_model"),
 -                             weights=retrieval_model_config.get("weights", None),
 -                             document_ids_filter=document_ids_filter,
 -                         )
 -                 self._on_query(query, [dataset_id], app_id, user_from, user_id)
 - 
 -                 if results:
 -                     self._on_retrieval_end(results, message_id, timer)
 - 
 -                 return results
 -         return []
 - 
 -     def multiple_retrieve(
 -         self,
 -         app_id: str,
 -         tenant_id: str,
 -         user_id: str,
 -         user_from: str,
 -         available_datasets: list,
 -         query: str,
 -         top_k: int,
 -         score_threshold: float,
 -         reranking_mode: str,
 -         reranking_model: Optional[dict] = None,
 -         weights: Optional[dict[str, Any]] = None,
 -         reranking_enable: bool = True,
 -         message_id: Optional[str] = None,
 -         metadata_filter_document_ids: Optional[dict[str, list[str]]] = None,
 -         metadata_condition: Optional[MetadataCondition] = None,
 -     ):
 -         if not available_datasets:
 -             return []
 -         threads = []
 -         all_documents: list[Document] = []
 -         dataset_ids = [dataset.id for dataset in available_datasets]
 -         index_type_check = all(
 -             item.indexing_technique == available_datasets[0].indexing_technique for item in available_datasets
 -         )
 -         if not index_type_check and (not reranking_enable or reranking_mode != RerankMode.RERANKING_MODEL):
 -             raise ValueError(
 -                 "The configured knowledge base list have different indexing technique, please set reranking model."
 -             )
 -         index_type = available_datasets[0].indexing_technique
 -         if index_type == "high_quality":
 -             embedding_model_check = all(
 -                 item.embedding_model == available_datasets[0].embedding_model for item in available_datasets
 -             )
 -             embedding_model_provider_check = all(
 -                 item.embedding_model_provider == available_datasets[0].embedding_model_provider
 -                 for item in available_datasets
 -             )
 -             if (
 -                 reranking_enable
 -                 and reranking_mode == "weighted_score"
 -                 and (not embedding_model_check or not embedding_model_provider_check)
 -             ):
 -                 raise ValueError(
 -                     "The configured knowledge base list have different embedding model, please set reranking model."
 -                 )
 -             if reranking_enable and reranking_mode == RerankMode.WEIGHTED_SCORE:
 -                 if weights is not None:
 -                     weights["vector_setting"]["embedding_provider_name"] = available_datasets[
 -                         0
 -                     ].embedding_model_provider
 -                     weights["vector_setting"]["embedding_model_name"] = available_datasets[0].embedding_model
 - 
 -         for dataset in available_datasets:
 -             index_type = dataset.indexing_technique
 -             document_ids_filter = None
 -             if dataset.provider != "external":
 -                 if metadata_condition and not metadata_filter_document_ids:
 -                     continue
 -                 if metadata_filter_document_ids:
 -                     document_ids = metadata_filter_document_ids.get(dataset.id, [])
 -                     if document_ids:
 -                         document_ids_filter = document_ids
 -                     else:
 -                         continue
 -             retrieval_thread = threading.Thread(
 -                 target=self._retriever,
 -                 kwargs={
 -                     "flask_app": current_app._get_current_object(),  # type: ignore
 -                     "dataset_id": dataset.id,
 -                     "query": query,
 -                     "top_k": top_k,
 -                     "all_documents": all_documents,
 -                     "document_ids_filter": document_ids_filter,
 -                     "metadata_condition": metadata_condition,
 -                 },
 -             )
 -             threads.append(retrieval_thread)
 -             retrieval_thread.start()
 -         for thread in threads:
 -             thread.join()
 - 
 -         with measure_time() as timer:
 -             if reranking_enable:
 -                 # do rerank for searched documents
 -                 data_post_processor = DataPostProcessor(tenant_id, reranking_mode, reranking_model, weights, False)
 - 
 -                 all_documents = data_post_processor.invoke(
 -                     query=query, documents=all_documents, score_threshold=score_threshold, top_n=top_k
 -                 )
 -             else:
 -                 if index_type == "economy":
 -                     all_documents = self.calculate_keyword_score(query, all_documents, top_k)
 -                 elif index_type == "high_quality":
 -                     all_documents = self.calculate_vector_score(all_documents, top_k, score_threshold)
 -                 else:
 -                     all_documents = all_documents[:top_k] if top_k else all_documents
 - 
 -         self._on_query(query, dataset_ids, app_id, user_from, user_id)
 - 
 -         if all_documents:
 -             self._on_retrieval_end(all_documents, message_id, timer)
 - 
 -         return all_documents
 - 
 -     def _on_retrieval_end(
 -         self, documents: list[Document], message_id: Optional[str] = None, timer: Optional[dict] = None
 -     ) -> None:
 -         """Handle retrieval end."""
 -         dify_documents = [document for document in documents if document.provider == "dify"]
 -         for document in dify_documents:
 -             if document.metadata is not None:
 -                 dataset_document = (
 -                     db.session.query(DatasetDocument)
 -                     .filter(DatasetDocument.id == document.metadata["document_id"])
 -                     .first()
 -                 )
 -                 if dataset_document:
 -                     if dataset_document.doc_form == IndexType.PARENT_CHILD_INDEX:
 -                         child_chunk = (
 -                             db.session.query(ChildChunk)
 -                             .filter(
 -                                 ChildChunk.index_node_id == document.metadata["doc_id"],
 -                                 ChildChunk.dataset_id == dataset_document.dataset_id,
 -                                 ChildChunk.document_id == dataset_document.id,
 -                             )
 -                             .first()
 -                         )
 -                         if child_chunk:
 -                             segment = (
 -                                 db.session.query(DocumentSegment)
 -                                 .filter(DocumentSegment.id == child_chunk.segment_id)
 -                                 .update(
 -                                     {DocumentSegment.hit_count: DocumentSegment.hit_count + 1},
 -                                     synchronize_session=False,
 -                                 )
 -                             )
 -                             db.session.commit()
 -                     else:
 -                         query = db.session.query(DocumentSegment).filter(
 -                             DocumentSegment.index_node_id == document.metadata["doc_id"]
 -                         )
 - 
 -                         # if 'dataset_id' in document.metadata:
 -                         if "dataset_id" in document.metadata:
 -                             query = query.filter(DocumentSegment.dataset_id == document.metadata["dataset_id"])
 - 
 -                         # add hit count to document segment
 -                         query.update(
 -                             {DocumentSegment.hit_count: DocumentSegment.hit_count + 1}, synchronize_session=False
 -                         )
 - 
 -                     db.session.commit()
 - 
 -         # get tracing instance
 -         trace_manager: TraceQueueManager | None = (
 -             self.application_generate_entity.trace_manager if self.application_generate_entity else None
 -         )
 -         if trace_manager:
 -             trace_manager.add_trace_task(
 -                 TraceTask(
 -                     TraceTaskName.DATASET_RETRIEVAL_TRACE, message_id=message_id, documents=documents, timer=timer
 -                 )
 -             )
 - 
 -     def _on_query(self, query: str, dataset_ids: list[str], app_id: str, user_from: str, user_id: str) -> None:
 -         """
 -         Handle query.
 -         """
 -         if not query:
 -             return
 -         dataset_queries = []
 -         for dataset_id in dataset_ids:
 -             dataset_query = DatasetQuery(
 -                 dataset_id=dataset_id,
 -                 content=query,
 -                 source="app",
 -                 source_app_id=app_id,
 -                 created_by_role=user_from,
 -                 created_by=user_id,
 -             )
 -             dataset_queries.append(dataset_query)
 -         if dataset_queries:
 -             db.session.add_all(dataset_queries)
 -         db.session.commit()
 - 
 -     def _retriever(
 -         self,
 -         flask_app: Flask,
 -         dataset_id: str,
 -         query: str,
 -         top_k: int,
 -         all_documents: list,
 -         document_ids_filter: Optional[list[str]] = None,
 -         metadata_condition: Optional[MetadataCondition] = None,
 -     ):
 -         with flask_app.app_context():
 -             dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()
 - 
 -             if not dataset:
 -                 return []
 - 
 -             if dataset.provider == "external":
 -                 external_documents = ExternalDatasetService.fetch_external_knowledge_retrieval(
 -                     tenant_id=dataset.tenant_id,
 -                     dataset_id=dataset_id,
 -                     query=query,
 -                     external_retrieval_parameters=dataset.retrieval_model,
 -                     metadata_condition=metadata_condition,
 -                 )
 -                 for external_document in external_documents:
 -                     document = Document(
 -                         page_content=external_document.get("content"),
 -                         metadata=external_document.get("metadata"),
 -                         provider="external",
 -                     )
 -                     if document.metadata is not None:
 -                         document.metadata["score"] = external_document.get("score")
 -                         document.metadata["title"] = external_document.get("title")
 -                         document.metadata["dataset_id"] = dataset_id
 -                         document.metadata["dataset_name"] = dataset.name
 -                     all_documents.append(document)
 -             else:
 -                 # get retrieval model , if the model is not setting , using default
 -                 retrieval_model = dataset.retrieval_model or default_retrieval_model
 - 
 -                 if dataset.indexing_technique == "economy":
 -                     # use keyword table query
 -                     documents = RetrievalService.retrieve(
 -                         retrieval_method="keyword_search",
 -                         dataset_id=dataset.id,
 -                         query=query,
 -                         top_k=top_k,
 -                         document_ids_filter=document_ids_filter,
 -                     )
 -                     if documents:
 -                         all_documents.extend(documents)
 -                 else:
 -                     if top_k > 0:
 -                         # retrieval source
 -                         documents = RetrievalService.retrieve(
 -                             retrieval_method=retrieval_model["search_method"],
 -                             dataset_id=dataset.id,
 -                             query=query,
 -                             top_k=retrieval_model.get("top_k") or 2,
 -                             score_threshold=retrieval_model.get("score_threshold", 0.0)
 -                             if retrieval_model["score_threshold_enabled"]
 -                             else 0.0,
 -                             reranking_model=retrieval_model.get("reranking_model", None)
 -                             if retrieval_model["reranking_enable"]
 -                             else None,
 -                             reranking_mode=retrieval_model.get("reranking_mode") or "reranking_model",
 -                             weights=retrieval_model.get("weights", None),
 -                             document_ids_filter=document_ids_filter,
 -                         )
 - 
 -                         all_documents.extend(documents)
 - 
 -     def to_dataset_retriever_tool(
 -         self,
 -         tenant_id: str,
 -         dataset_ids: list[str],
 -         retrieve_config: DatasetRetrieveConfigEntity,
 -         return_resource: bool,
 -         invoke_from: InvokeFrom,
 -         hit_callback: DatasetIndexToolCallbackHandler,
 -         user_id: str,
 -         inputs: dict,
 -     ) -> Optional[list[DatasetRetrieverBaseTool]]:
 -         """
 -         A dataset tool is a tool that can be used to retrieve information from a dataset
 -         :param tenant_id: tenant id
 -         :param dataset_ids: dataset ids
 -         :param retrieve_config: retrieve config
 -         :param return_resource: return resource
 -         :param invoke_from: invoke from
 -         :param hit_callback: hit callback
 -         """
 -         tools = []
 -         available_datasets = []
 -         for dataset_id in dataset_ids:
 -             # get dataset from dataset id
 -             dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
 - 
 -             # pass if dataset is not available
 -             if not dataset:
 -                 continue
 - 
 -             # pass if dataset is not available
 -             if dataset and dataset.provider != "external" and dataset.available_document_count == 0:
 -                 continue
 - 
 -             available_datasets.append(dataset)
 - 
 -         if retrieve_config.retrieve_strategy == DatasetRetrieveConfigEntity.RetrieveStrategy.SINGLE:
 -             # get retrieval model config
 -             default_retrieval_model = {
 -                 "search_method": RetrievalMethod.SEMANTIC_SEARCH.value,
 -                 "reranking_enable": False,
 -                 "reranking_model": {"reranking_provider_name": "", "reranking_model_name": ""},
 -                 "top_k": 2,
 -                 "score_threshold_enabled": False,
 -             }
 - 
 -             for dataset in available_datasets:
 -                 retrieval_model_config = dataset.retrieval_model or default_retrieval_model
 - 
 -                 # get top k
 -                 top_k = retrieval_model_config["top_k"]
 - 
 -                 # get score threshold
 -                 score_threshold = None
 -                 score_threshold_enabled = retrieval_model_config.get("score_threshold_enabled")
 -                 if score_threshold_enabled:
 -                     score_threshold = retrieval_model_config.get("score_threshold")
 - 
 -                 from core.tools.utils.dataset_retriever.dataset_retriever_tool import DatasetRetrieverTool
 - 
 -                 tool = DatasetRetrieverTool.from_dataset(
 -                     dataset=dataset,
 -                     top_k=top_k,
 -                     score_threshold=score_threshold,
 -                     hit_callbacks=[hit_callback],
 -                     return_resource=return_resource,
 -                     retriever_from=invoke_from.to_source(),
 -                     retrieve_config=retrieve_config,
 -                     user_id=user_id,
 -                     inputs=inputs,
 -                 )
 - 
 -                 tools.append(tool)
 -         elif retrieve_config.retrieve_strategy == DatasetRetrieveConfigEntity.RetrieveStrategy.MULTIPLE:
 -             from core.tools.utils.dataset_retriever.dataset_multi_retriever_tool import DatasetMultiRetrieverTool
 - 
 -             if retrieve_config.reranking_model is None:
 -                 raise ValueError("Reranking model is required for multiple retrieval")
 - 
 -             tool = DatasetMultiRetrieverTool.from_dataset(
 -                 dataset_ids=[dataset.id for dataset in available_datasets],
 -                 tenant_id=tenant_id,
 -                 top_k=retrieve_config.top_k or 2,
 -                 score_threshold=retrieve_config.score_threshold,
 -                 hit_callbacks=[hit_callback],
 -                 return_resource=return_resource,
 -                 retriever_from=invoke_from.to_source(),
 -                 reranking_provider_name=retrieve_config.reranking_model.get("reranking_provider_name"),
 -                 reranking_model_name=retrieve_config.reranking_model.get("reranking_model_name"),
 -             )
 - 
 -             tools.append(tool)
 - 
 -         return tools
 - 
 -     def calculate_keyword_score(self, query: str, documents: list[Document], top_k: int) -> list[Document]:
 -         """
 -         Calculate keywords scores
 -         :param query: search query
 -         :param documents: documents for reranking
 -         :param top_k: top k
 - 
 -         :return:
 -         """
 -         keyword_table_handler = JiebaKeywordTableHandler()
 -         query_keywords = keyword_table_handler.extract_keywords(query, None)
 -         documents_keywords = []
 -         for document in documents:
 -             if document.metadata is not None:
 -                 # get the document keywords
 -                 document_keywords = keyword_table_handler.extract_keywords(document.page_content, None)
 -                 document.metadata["keywords"] = document_keywords
 -                 documents_keywords.append(document_keywords)
 - 
 -         # Counter query keywords(TF)
 -         query_keyword_counts = Counter(query_keywords)
 - 
 -         # total documents
 -         total_documents = len(documents)
 - 
 -         # calculate all documents' keywords IDF
 -         all_keywords = set()
 -         for document_keywords in documents_keywords:
 -             all_keywords.update(document_keywords)
 - 
 -         keyword_idf = {}
 -         for keyword in all_keywords:
 -             # calculate include query keywords' documents
 -             doc_count_containing_keyword = sum(1 for doc_keywords in documents_keywords if keyword in doc_keywords)
 -             # IDF
 -             keyword_idf[keyword] = math.log((1 + total_documents) / (1 + doc_count_containing_keyword)) + 1
 - 
 -         query_tfidf = {}
 - 
 -         for keyword, count in query_keyword_counts.items():
 -             tf = count
 -             idf = keyword_idf.get(keyword, 0)
 -             query_tfidf[keyword] = tf * idf
 - 
 -         # calculate all documents' TF-IDF
 -         documents_tfidf = []
 -         for document_keywords in documents_keywords:
 -             document_keyword_counts = Counter(document_keywords)
 -             document_tfidf = {}
 -             for keyword, count in document_keyword_counts.items():
 -                 tf = count
 -                 idf = keyword_idf.get(keyword, 0)
 -                 document_tfidf[keyword] = tf * idf
 -             documents_tfidf.append(document_tfidf)
 - 
 -         def cosine_similarity(vec1, vec2):
 -             intersection = set(vec1.keys()) & set(vec2.keys())
 -             numerator = sum(vec1[x] * vec2[x] for x in intersection)
 - 
 -             sum1 = sum(vec1[x] ** 2 for x in vec1)
 -             sum2 = sum(vec2[x] ** 2 for x in vec2)
 -             denominator = math.sqrt(sum1) * math.sqrt(sum2)
 - 
 -             if not denominator:
 -                 return 0.0
 -             else:
 -                 return float(numerator) / denominator
 - 
 -         similarities = []
 -         for document_tfidf in documents_tfidf:
 -             similarity = cosine_similarity(query_tfidf, document_tfidf)
 -             similarities.append(similarity)
 - 
 -         for document, score in zip(documents, similarities):
 -             # format document
 -             if document.metadata is not None:
 -                 document.metadata["score"] = score
 -         documents = sorted(documents, key=lambda x: x.metadata.get("score", 0) if x.metadata else 0, reverse=True)
 -         return documents[:top_k] if top_k else documents
 - 
 -     def calculate_vector_score(
 -         self, all_documents: list[Document], top_k: int, score_threshold: float
 -     ) -> list[Document]:
 -         filter_documents = []
 -         for document in all_documents:
 -             if score_threshold is None or (document.metadata and document.metadata.get("score", 0) >= score_threshold):
 -                 filter_documents.append(document)
 - 
 -         if not filter_documents:
 -             return []
 -         filter_documents = sorted(
 -             filter_documents, key=lambda x: x.metadata.get("score", 0) if x.metadata else 0, reverse=True
 -         )
 -         return filter_documents[:top_k] if top_k else filter_documents
 - 
 -     def get_metadata_filter_condition(
 -         self,
 -         dataset_ids: list,
 -         query: str,
 -         tenant_id: str,
 -         user_id: str,
 -         metadata_filtering_mode: str,
 -         metadata_model_config: ModelConfig,
 -         metadata_filtering_conditions: Optional[MetadataFilteringCondition],
 -         inputs: dict,
 -     ) -> tuple[Optional[dict[str, list[str]]], Optional[MetadataCondition]]:
 -         document_query = db.session.query(DatasetDocument).filter(
 -             DatasetDocument.dataset_id.in_(dataset_ids),
 -             DatasetDocument.indexing_status == "completed",
 -             DatasetDocument.enabled == True,
 -             DatasetDocument.archived == False,
 -         )
 -         filters = []  # type: ignore
 -         metadata_condition = None
 -         if metadata_filtering_mode == "disabled":
 -             return None, None
 -         elif metadata_filtering_mode == "automatic":
 -             automatic_metadata_filters = self._automatic_metadata_filter_func(
 -                 dataset_ids, query, tenant_id, user_id, metadata_model_config
 -             )
 -             if automatic_metadata_filters:
 -                 conditions = []
 -                 for sequence, filter in enumerate(automatic_metadata_filters):
 -                     self._process_metadata_filter_func(
 -                         sequence,
 -                         filter.get("condition"),  # type: ignore
 -                         filter.get("metadata_name"),  # type: ignore
 -                         filter.get("value"),
 -                         filters,  # type: ignore
 -                     )
 -                     conditions.append(
 -                         Condition(
 -                             name=filter.get("metadata_name"),  # type: ignore
 -                             comparison_operator=filter.get("condition"),  # type: ignore
 -                             value=filter.get("value"),
 -                         )
 -                     )
 -                 metadata_condition = MetadataCondition(
 -                     logical_operator=metadata_filtering_conditions.logical_operator
 -                     if metadata_filtering_conditions
 -                     else "or",  # type: ignore
 -                     conditions=conditions,
 -                 )
 -         elif metadata_filtering_mode == "manual":
 -             if metadata_filtering_conditions:
 -                 conditions = []
 -                 for sequence, condition in enumerate(metadata_filtering_conditions.conditions):  # type: ignore
 -                     metadata_name = condition.name
 -                     expected_value = condition.value
 -                     if expected_value is not None and condition.comparison_operator not in ("empty", "not empty"):
 -                         if isinstance(expected_value, str):
 -                             expected_value = self._replace_metadata_filter_value(expected_value, inputs)
 -                     conditions.append(
 -                         Condition(
 -                             name=metadata_name,
 -                             comparison_operator=condition.comparison_operator,
 -                             value=expected_value,
 -                         )
 -                     )
 -                     filters = self._process_metadata_filter_func(
 -                         sequence,
 -                         condition.comparison_operator,
 -                         metadata_name,
 -                         expected_value,
 -                         filters,
 -                     )
 -                 metadata_condition = MetadataCondition(
 -                     logical_operator=metadata_filtering_conditions.logical_operator,
 -                     conditions=conditions,
 -                 )
 -         else:
 -             raise ValueError("Invalid metadata filtering mode")
 -         if filters:
 -             if metadata_filtering_conditions and metadata_filtering_conditions.logical_operator == "and":  # type: ignore
 -                 document_query = document_query.filter(and_(*filters))
 -             else:
 -                 document_query = document_query.filter(or_(*filters))
 -         documents = document_query.all()
 -         # group by dataset_id
 -         metadata_filter_document_ids = defaultdict(list) if documents else None  # type: ignore
 -         for document in documents:
 -             metadata_filter_document_ids[document.dataset_id].append(document.id)  # type: ignore
 -         return metadata_filter_document_ids, metadata_condition
 - 
 -     def _replace_metadata_filter_value(self, text: str, inputs: dict) -> str:
 -         if not inputs:
 -             return text
 - 
 -         def replacer(match):
 -             key = match.group(1)
 -             return str(inputs.get(key, f"{{{{{key}}}}}"))
 - 
 -         pattern = re.compile(r"\{\{(\w+)\}\}")
 -         output = pattern.sub(replacer, text)
 -         if isinstance(output, str):
 -             output = re.sub(r"[\r\n\t]+", " ", output).strip()
 -         return output
 - 
 -     def _automatic_metadata_filter_func(
 -         self, dataset_ids: list, query: str, tenant_id: str, user_id: str, metadata_model_config: ModelConfig
 -     ) -> Optional[list[dict[str, Any]]]:
 -         # get all metadata field
 -         metadata_fields = db.session.query(DatasetMetadata).filter(DatasetMetadata.dataset_id.in_(dataset_ids)).all()
 -         all_metadata_fields = [metadata_field.name for metadata_field in metadata_fields]
 -         # get metadata model config
 -         if metadata_model_config is None:
 -             raise ValueError("metadata_model_config is required")
 -         # get metadata model instance
 -         # fetch model config
 -         model_instance, model_config = self._fetch_model_config(tenant_id, metadata_model_config)
 - 
 -         # fetch prompt messages
 -         prompt_messages, stop = self._get_prompt_template(
 -             model_config=model_config,
 -             mode=metadata_model_config.mode,
 -             metadata_fields=all_metadata_fields,
 -             query=query or "",
 -         )
 - 
 -         result_text = ""
 -         try:
 -             # handle invoke result
 -             invoke_result = cast(
 -                 Generator[LLMResult, None, None],
 -                 model_instance.invoke_llm(
 -                     prompt_messages=prompt_messages,
 -                     model_parameters=model_config.parameters,
 -                     stop=stop,
 -                     stream=True,
 -                     user=user_id,
 -                 ),
 -             )
 - 
 -             # handle invoke result
 -             result_text, usage = self._handle_invoke_result(invoke_result=invoke_result)
 - 
 -             result_text_json = parse_and_check_json_markdown(result_text, [])
 -             automatic_metadata_filters = []
 -             if "metadata_map" in result_text_json:
 -                 metadata_map = result_text_json["metadata_map"]
 -                 for item in metadata_map:
 -                     if item.get("metadata_field_name") in all_metadata_fields:
 -                         automatic_metadata_filters.append(
 -                             {
 -                                 "metadata_name": item.get("metadata_field_name"),
 -                                 "value": item.get("metadata_field_value"),
 -                                 "condition": item.get("comparison_operator"),
 -                             }
 -                         )
 -         except Exception as e:
 -             return None
 -         return automatic_metadata_filters
 - 
 -     def _process_metadata_filter_func(
 -         self, sequence: int, condition: str, metadata_name: str, value: Optional[Any], filters: list
 -     ):
 -         if value is None:
 -             return
 - 
 -         key = f"{metadata_name}_{sequence}"
 -         key_value = f"{metadata_name}_{sequence}_value"
 -         match condition:
 -             case "contains":
 -                 filters.append(
 -                     (text(f"documents.doc_metadata ->> :{key} LIKE :{key_value}")).params(
 -                         **{key: metadata_name, key_value: f"%{value}%"}
 -                     )
 -                 )
 -             case "not contains":
 -                 filters.append(
 -                     (text(f"documents.doc_metadata ->> :{key} NOT LIKE :{key_value}")).params(
 -                         **{key: metadata_name, key_value: f"%{value}%"}
 -                     )
 -                 )
 -             case "start with":
 -                 filters.append(
 -                     (text(f"documents.doc_metadata ->> :{key} LIKE :{key_value}")).params(
 -                         **{key: metadata_name, key_value: f"{value}%"}
 -                     )
 -                 )
 - 
 -             case "end with":
 -                 filters.append(
 -                     (text(f"documents.doc_metadata ->> :{key} LIKE :{key_value}")).params(
 -                         **{key: metadata_name, key_value: f"%{value}"}
 -                     )
 -                 )
 -             case "is" | "=":
 -                 if isinstance(value, str):
 -                     filters.append(DatasetDocument.doc_metadata[metadata_name] == f'"{value}"')
 -                 else:
 -                     filters.append(sqlalchemy_cast(DatasetDocument.doc_metadata[metadata_name].astext, Float) == value)
 -             case "is not" | "≠":
 -                 if isinstance(value, str):
 -                     filters.append(DatasetDocument.doc_metadata[metadata_name] != f'"{value}"')
 -                 else:
 -                     filters.append(sqlalchemy_cast(DatasetDocument.doc_metadata[metadata_name].astext, Float) != value)
 -             case "empty":
 -                 filters.append(DatasetDocument.doc_metadata[metadata_name].is_(None))
 -             case "not empty":
 -                 filters.append(DatasetDocument.doc_metadata[metadata_name].isnot(None))
 -             case "before" | "<":
 -                 filters.append(sqlalchemy_cast(DatasetDocument.doc_metadata[metadata_name].astext, Float) < value)
 -             case "after" | ">":
 -                 filters.append(sqlalchemy_cast(DatasetDocument.doc_metadata[metadata_name].astext, Float) > value)
 -             case "≤" | "<=":
 -                 filters.append(sqlalchemy_cast(DatasetDocument.doc_metadata[metadata_name].astext, Float) <= value)
 -             case "≥" | ">=":
 -                 filters.append(sqlalchemy_cast(DatasetDocument.doc_metadata[metadata_name].astext, Float) >= value)
 -             case _:
 -                 pass
 -         return filters
 - 
 -     def _fetch_model_config(
 -         self, tenant_id: str, model: ModelConfig
 -     ) -> tuple[ModelInstance, ModelConfigWithCredentialsEntity]:
 -         """
 -         Fetch model config
 -         """
 -         if model is None:
 -             raise ValueError("single_retrieval_config is required")
 -         model_name = model.name
 -         provider_name = model.provider
 - 
 -         model_manager = ModelManager()
 -         model_instance = model_manager.get_model_instance(
 -             tenant_id=tenant_id, model_type=ModelType.LLM, provider=provider_name, model=model_name
 -         )
 - 
 -         provider_model_bundle = model_instance.provider_model_bundle
 -         model_type_instance = model_instance.model_type_instance
 -         model_type_instance = cast(LargeLanguageModel, model_type_instance)
 - 
 -         model_credentials = model_instance.credentials
 - 
 -         # check model
 -         provider_model = provider_model_bundle.configuration.get_provider_model(
 -             model=model_name, model_type=ModelType.LLM
 -         )
 - 
 -         if provider_model is None:
 -             raise ValueError(f"Model {model_name} not exist.")
 - 
 -         if provider_model.status == ModelStatus.NO_CONFIGURE:
 -             raise ValueError(f"Model {model_name} credentials is not initialized.")
 -         elif provider_model.status == ModelStatus.NO_PERMISSION:
 -             raise ValueError(f"Dify Hosted OpenAI {model_name} currently not support.")
 -         elif provider_model.status == ModelStatus.QUOTA_EXCEEDED:
 -             raise ValueError(f"Model provider {provider_name} quota exceeded.")
 - 
 -         # model config
 -         completion_params = model.completion_params
 -         stop = []
 -         if "stop" in completion_params:
 -             stop = completion_params["stop"]
 -             del completion_params["stop"]
 - 
 -         # get model mode
 -         model_mode = model.mode
 -         if not model_mode:
 -             raise ValueError("LLM mode is required.")
 - 
 -         model_schema = model_type_instance.get_model_schema(model_name, model_credentials)
 - 
 -         if not model_schema:
 -             raise ValueError(f"Model {model_name} not exist.")
 - 
 -         return model_instance, ModelConfigWithCredentialsEntity(
 -             provider=provider_name,
 -             model=model_name,
 -             model_schema=model_schema,
 -             mode=model_mode,
 -             provider_model_bundle=provider_model_bundle,
 -             credentials=model_credentials,
 -             parameters=completion_params,
 -             stop=stop,
 -         )
 - 
 -     def _get_prompt_template(
 -         self, model_config: ModelConfigWithCredentialsEntity, mode: str, metadata_fields: list, query: str
 -     ):
 -         model_mode = ModelMode.value_of(mode)
 -         input_text = query
 - 
 -         prompt_template: Union[CompletionModelPromptTemplate, list[ChatModelMessage]]
 -         if model_mode == ModelMode.CHAT:
 -             prompt_template = []
 -             system_prompt_messages = ChatModelMessage(role=PromptMessageRole.SYSTEM, text=METADATA_FILTER_SYSTEM_PROMPT)
 -             prompt_template.append(system_prompt_messages)
 -             user_prompt_message_1 = ChatModelMessage(role=PromptMessageRole.USER, text=METADATA_FILTER_USER_PROMPT_1)
 -             prompt_template.append(user_prompt_message_1)
 -             assistant_prompt_message_1 = ChatModelMessage(
 -                 role=PromptMessageRole.ASSISTANT, text=METADATA_FILTER_ASSISTANT_PROMPT_1
 -             )
 -             prompt_template.append(assistant_prompt_message_1)
 -             user_prompt_message_2 = ChatModelMessage(role=PromptMessageRole.USER, text=METADATA_FILTER_USER_PROMPT_2)
 -             prompt_template.append(user_prompt_message_2)
 -             assistant_prompt_message_2 = ChatModelMessage(
 -                 role=PromptMessageRole.ASSISTANT, text=METADATA_FILTER_ASSISTANT_PROMPT_2
 -             )
 -             prompt_template.append(assistant_prompt_message_2)
 -             user_prompt_message_3 = ChatModelMessage(
 -                 role=PromptMessageRole.USER,
 -                 text=METADATA_FILTER_USER_PROMPT_3.format(
 -                     input_text=input_text,
 -                     metadata_fields=json.dumps(metadata_fields, ensure_ascii=False),
 -                 ),
 -             )
 -             prompt_template.append(user_prompt_message_3)
 -         elif model_mode == ModelMode.COMPLETION:
 -             prompt_template = CompletionModelPromptTemplate(
 -                 text=METADATA_FILTER_COMPLETION_PROMPT.format(
 -                     input_text=input_text,
 -                     metadata_fields=json.dumps(metadata_fields, ensure_ascii=False),
 -                 )
 -             )
 - 
 -         else:
 -             raise ValueError(f"Model mode {model_mode} not support.")
 - 
 -         prompt_transform = AdvancedPromptTransform()
 -         prompt_messages = prompt_transform.get_prompt(
 -             prompt_template=prompt_template,
 -             inputs={},
 -             query=query or "",
 -             files=[],
 -             context=None,
 -             memory_config=None,
 -             memory=None,
 -             model_config=model_config,
 -         )
 -         stop = model_config.stop
 - 
 -         return prompt_messages, stop
 - 
 -     def _handle_invoke_result(self, invoke_result: Generator) -> tuple[str, LLMUsage]:
 -         """
 -         Handle invoke result
 -         :param invoke_result: invoke result
 -         :return:
 -         """
 -         model = None
 -         prompt_messages: list[PromptMessage] = []
 -         full_text = ""
 -         usage = None
 -         for result in invoke_result:
 -             text = result.delta.message.content
 -             full_text += text
 - 
 -             if not model:
 -                 model = result.model
 - 
 -             if not prompt_messages:
 -                 prompt_messages = result.prompt_messages
 - 
 -             if not usage and result.delta.usage:
 -                 usage = result.delta.usage
 - 
 -         if not usage:
 -             usage = LLMUsage.empty_usage()
 - 
 -         return full_text, usage
 
 
  |