| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169 | 
							- import logging
 - import time
 - 
 - import click
 - from celery import shared_task  # type: ignore
 - 
 - from core.rag.index_processor.constant.index_type import IndexType
 - from core.rag.index_processor.index_processor_factory import IndexProcessorFactory
 - from core.rag.models.document import ChildDocument, Document
 - from extensions.ext_database import db
 - from models.dataset import Dataset, DocumentSegment
 - from models.dataset import Document as DatasetDocument
 - 
 - 
 - @shared_task(queue="dataset")
 - def deal_dataset_vector_index_task(dataset_id: str, action: str):
 -     """
 -     Async deal dataset from index
 -     :param dataset_id: dataset_id
 -     :param action: action
 -     Usage: deal_dataset_vector_index_task.delay(dataset_id, action)
 -     """
 -     logging.info(click.style("Start deal dataset vector index: {}".format(dataset_id), fg="green"))
 -     start_at = time.perf_counter()
 - 
 -     try:
 -         dataset = Dataset.query.filter_by(id=dataset_id).first()
 - 
 -         if not dataset:
 -             raise Exception("Dataset not found")
 -         index_type = dataset.doc_form or IndexType.PARAGRAPH_INDEX
 -         index_processor = IndexProcessorFactory(index_type).init_index_processor()
 -         if action == "remove":
 -             index_processor.clean(dataset, None, with_keywords=False)
 -         elif action == "add":
 -             dataset_documents = (
 -                 db.session.query(DatasetDocument)
 -                 .filter(
 -                     DatasetDocument.dataset_id == dataset_id,
 -                     DatasetDocument.indexing_status == "completed",
 -                     DatasetDocument.enabled == True,
 -                     DatasetDocument.archived == False,
 -                 )
 -                 .all()
 -             )
 - 
 -             if dataset_documents:
 -                 dataset_documents_ids = [doc.id for doc in dataset_documents]
 -                 db.session.query(DatasetDocument).filter(DatasetDocument.id.in_(dataset_documents_ids)).update(
 -                     {"indexing_status": "indexing"}, synchronize_session=False
 -                 )
 -                 db.session.commit()
 - 
 -                 for dataset_document in dataset_documents:
 -                     try:
 -                         # add from vector index
 -                         segments = (
 -                             db.session.query(DocumentSegment)
 -                             .filter(DocumentSegment.document_id == dataset_document.id, DocumentSegment.enabled == True)
 -                             .order_by(DocumentSegment.position.asc())
 -                             .all()
 -                         )
 -                         if segments:
 -                             documents = []
 -                             for segment in segments:
 -                                 document = Document(
 -                                     page_content=segment.content,
 -                                     metadata={
 -                                         "doc_id": segment.index_node_id,
 -                                         "doc_hash": segment.index_node_hash,
 -                                         "document_id": segment.document_id,
 -                                         "dataset_id": segment.dataset_id,
 -                                     },
 -                                 )
 - 
 -                                 documents.append(document)
 -                             # save vector index
 -                             index_processor.load(dataset, documents, with_keywords=False)
 -                         db.session.query(DatasetDocument).filter(DatasetDocument.id == dataset_document.id).update(
 -                             {"indexing_status": "completed"}, synchronize_session=False
 -                         )
 -                         db.session.commit()
 -                     except Exception as e:
 -                         db.session.query(DatasetDocument).filter(DatasetDocument.id == dataset_document.id).update(
 -                             {"indexing_status": "error", "error": str(e)}, synchronize_session=False
 -                         )
 -                         db.session.commit()
 -         elif action == "update":
 -             dataset_documents = (
 -                 db.session.query(DatasetDocument)
 -                 .filter(
 -                     DatasetDocument.dataset_id == dataset_id,
 -                     DatasetDocument.indexing_status == "completed",
 -                     DatasetDocument.enabled == True,
 -                     DatasetDocument.archived == False,
 -                 )
 -                 .all()
 -             )
 -             # add new index
 -             if dataset_documents:
 -                 # update document status
 -                 dataset_documents_ids = [doc.id for doc in dataset_documents]
 -                 db.session.query(DatasetDocument).filter(DatasetDocument.id.in_(dataset_documents_ids)).update(
 -                     {"indexing_status": "indexing"}, synchronize_session=False
 -                 )
 -                 db.session.commit()
 - 
 -                 # clean index
 -                 index_processor.clean(dataset, None, with_keywords=False, delete_child_chunks=False)
 - 
 -                 for dataset_document in dataset_documents:
 -                     # update from vector index
 -                     try:
 -                         segments = (
 -                             db.session.query(DocumentSegment)
 -                             .filter(DocumentSegment.document_id == dataset_document.id, DocumentSegment.enabled == True)
 -                             .order_by(DocumentSegment.position.asc())
 -                             .all()
 -                         )
 -                         if segments:
 -                             documents = []
 -                             for segment in segments:
 -                                 document = Document(
 -                                     page_content=segment.content,
 -                                     metadata={
 -                                         "doc_id": segment.index_node_id,
 -                                         "doc_hash": segment.index_node_hash,
 -                                         "document_id": segment.document_id,
 -                                         "dataset_id": segment.dataset_id,
 -                                     },
 -                                 )
 -                                 if dataset_document.doc_form == IndexType.PARENT_CHILD_INDEX:
 -                                     child_chunks = segment.get_child_chunks()
 -                                     if child_chunks:
 -                                         child_documents = []
 -                                         for child_chunk in child_chunks:
 -                                             child_document = ChildDocument(
 -                                                 page_content=child_chunk.content,
 -                                                 metadata={
 -                                                     "doc_id": child_chunk.index_node_id,
 -                                                     "doc_hash": child_chunk.index_node_hash,
 -                                                     "document_id": segment.document_id,
 -                                                     "dataset_id": segment.dataset_id,
 -                                                 },
 -                                             )
 -                                             child_documents.append(child_document)
 -                                         document.children = child_documents
 -                                 documents.append(document)
 -                             # save vector index
 -                             index_processor.load(dataset, documents, with_keywords=False)
 -                         db.session.query(DatasetDocument).filter(DatasetDocument.id == dataset_document.id).update(
 -                             {"indexing_status": "completed"}, synchronize_session=False
 -                         )
 -                         db.session.commit()
 -                     except Exception as e:
 -                         db.session.query(DatasetDocument).filter(DatasetDocument.id == dataset_document.id).update(
 -                             {"indexing_status": "error", "error": str(e)}, synchronize_session=False
 -                         )
 -                         db.session.commit()
 -             else:
 -                 # clean collection
 -                 index_processor.clean(dataset, None, with_keywords=False, delete_child_chunks=False)
 - 
 -         end_at = time.perf_counter()
 -         logging.info(
 -             click.style("Deal dataset vector index: {} latency: {}".format(dataset_id, end_at - start_at), fg="green")
 -         )
 -     except Exception:
 -         logging.exception("Deal dataset vector index failed")
 
 
  |