| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495 | 
							- import logging
 - from typing import List, Optional
 - 
 - import numpy as np
 - from langchain.embeddings.base import Embeddings
 - from sqlalchemy.exc import IntegrityError
 - 
 - from core.model_manager import ModelInstance
 - from extensions.ext_database import db
 - from libs import helper
 - from models.dataset import Embedding
 - 
 - logger = logging.getLogger(__name__)
 - 
 - 
 - class CacheEmbedding(Embeddings):
 -     def __init__(self, model_instance: ModelInstance, user: Optional[str] = None) -> None:
 -         self._model_instance = model_instance
 -         self._user = user
 - 
 -     def embed_documents(self, texts: List[str]) -> List[List[float]]:
 -         """Embed search docs."""
 -         # use doc embedding cache or store if not exists
 -         text_embeddings = [None for _ in range(len(texts))]
 -         embedding_queue_indices = []
 -         for i, text in enumerate(texts):
 -             hash = helper.generate_text_hash(text)
 -             embedding = db.session.query(Embedding).filter_by(model_name=self._model_instance.model, hash=hash).first()
 -             if embedding:
 -                 text_embeddings[i] = embedding.get_embedding()
 -             else:
 -                 embedding_queue_indices.append(i)
 - 
 -         if embedding_queue_indices:
 -             try:
 -                 embedding_result = self._model_instance.invoke_text_embedding(
 -                     texts=[texts[i] for i in embedding_queue_indices],
 -                     user=self._user
 -                 )
 - 
 -                 embedding_results = embedding_result.embeddings
 -             except Exception as ex:
 -                 logger.error('Failed to embed documents: ', ex)
 -                 raise ex
 - 
 -             for i, indice in enumerate(embedding_queue_indices):
 -                 hash = helper.generate_text_hash(texts[indice])
 - 
 -                 try:
 -                     embedding = Embedding(model_name=self._model_instance.model, hash=hash)
 -                     vector = embedding_results[i]
 -                     normalized_embedding = (vector / np.linalg.norm(vector)).tolist()
 -                     text_embeddings[indice] = normalized_embedding
 -                     embedding.set_embedding(normalized_embedding)
 -                     db.session.add(embedding)
 -                     db.session.commit()
 -                 except IntegrityError:
 -                     db.session.rollback()
 -                     continue
 -                 except:
 -                     logging.exception('Failed to add embedding to db')
 -                     continue
 - 
 -         return text_embeddings
 - 
 -     def embed_query(self, text: str) -> List[float]:
 -         """Embed query text."""
 -         # use doc embedding cache or store if not exists
 -         hash = helper.generate_text_hash(text)
 -         embedding = db.session.query(Embedding).filter_by(model_name=self._model_instance.model, hash=hash).first()
 -         if embedding:
 -             return embedding.get_embedding()
 - 
 -         try:
 -             embedding_result = self._model_instance.invoke_text_embedding(
 -                 texts=[text],
 -                 user=self._user
 -             )
 - 
 -             embedding_results = embedding_result.embeddings[0]
 -             embedding_results = (embedding_results / np.linalg.norm(embedding_results)).tolist()
 -         except Exception as ex:
 -             raise ex
 - 
 -         try:
 -             embedding = Embedding(model_name=self._model_instance.model, hash=hash)
 -             embedding.set_embedding(embedding_results)
 -             db.session.add(embedding)
 -             db.session.commit()
 -         except IntegrityError:
 -             db.session.rollback()
 -         except:
 -             logging.exception('Failed to add embedding to db')
 - 
 -         return embedding_results
 
 
  |