Вы не можете выбрать более 25 тем Темы должны начинаться с буквы или цифры, могут содержать дефисы(-) и должны содержать не более 35 символов.
zhaoyi233 4373777871
Update json_in_md_parser.py (#8983)
1 год назад
..
.idea fix nltk averaged_perceptron_tagger download and fix score limit is none (#7582) 1 год назад
.vscode chore: remove .idea and .vscode from root path (#7437) 1 год назад
configs chore(version): bump to 0.9.1 (#8945) 1 год назад
constants feat: regenerate in `Chat`, `agent` and `Chatflow` app (#7661) 1 год назад
contexts chore(api): Introduce Ruff Formatter. (#7291) 1 год назад
controllers fix: chat API is not bringing the conversation/session history (#8965) 1 год назад
core Update json_in_md_parser.py (#8983) 1 год назад
docker fix: use LOG_LEVEL for celery startup (#7628) 1 год назад
events chore: bump ruff to 0.6.8 for fixing violation in SIM910 (#8869) 1 год назад
extensions add storage error log (#8556) 1 год назад
fields external knowledge api (#8913) 1 год назад
libs Update json_in_md_parser.py (#8983) 1 год назад
migrations external knowledge api (#8913) 1 год назад
models external knowledge api (#8913) 1 год назад
schedule external knowledge api (#8913) 1 год назад
services fix multiple retrieval in knowledge node (#8942) 1 год назад
tasks external knowledge api (#8913) 1 год назад
templates feat: implement forgot password feature (#5534) 1 год назад
tests feat(api): add version comparison logic (#8902) 1 год назад
.dockerignore build: support Poetry for depencencies tool in api's Dockerfile (#5105) 1 год назад
.env.example feat: add min-connection and max-connection for pgvector (#8841) 1 год назад
Dockerfile fix: Version '2.6.2-2' for 'expat' was not found (#8182) 1 год назад
README.md Enhance Readme Documentation to Clarify the Importance of Celery Service (#8558) 1 год назад
app.py chore: remove windows platform timezone set (#8712) 1 год назад
commands.py fix: typos and improve naming conventions: (#8687) 1 год назад
poetry.lock external knowledge api (#8913) 1 год назад
poetry.toml build: initial support for poetry build tool (#4513) 1 год назад
pyproject.toml external knowledge api (#8913) 1 год назад

README.md

Dify Backend API

Usage

[!IMPORTANT] In the v0.6.12 release, we deprecated pip as the package management tool for Dify API Backend service and replaced it with poetry.

  1. Start the docker-compose stack

The backend require some middleware, including PostgreSQL, Redis, and Weaviate, which can be started together using docker-compose.

   cd ../docker
   cp middleware.env.example middleware.env
   # change the profile to other vector database if you are not using weaviate
   docker compose -f docker-compose.middleware.yaml --profile weaviate -p dify up -d
   cd ../api
  1. Copy .env.example to .env
  2. Generate a SECRET_KEY in the .env file.
   sed -i "/^SECRET_KEY=/c\SECRET_KEY=$(openssl rand -base64 42)" .env
   secret_key=$(openssl rand -base64 42)
   sed -i '' "/^SECRET_KEY=/c\\
   SECRET_KEY=${secret_key}" .env
  1. Create environment.

Dify API service uses Poetry to manage dependencies. You can execute poetry shell to activate the environment.

  1. Install dependencies
   poetry env use 3.10
   poetry install

In case of contributors missing to update dependencies for pyproject.toml, you can perform the following shell instead.

   poetry shell                                               # activate current environment
   poetry add $(cat requirements.txt)           # install dependencies of production and update pyproject.toml
   poetry add $(cat requirements-dev.txt) --group dev    # install dependencies of development and update pyproject.toml
  1. Run migrate

Before the first launch, migrate the database to the latest version.

   poetry run python -m flask db upgrade
  1. Start backend
   poetry run python -m flask run --host 0.0.0.0 --port=5001 --debug
  1. Start Dify web service.
  2. Setup your application by visiting http://localhost:3000
  3. If you need to handle and debug the async tasks (e.g. dataset importing and documents indexing), please start the worker service.
   poetry run python -m celery -A app.celery worker -P gevent -c 1 --loglevel INFO -Q dataset,generation,mail,ops_trace,app_deletion

Testing

  1. Install dependencies for both the backend and the test environment
   poetry install --with dev
  1. Run the tests locally with mocked system environment variables in tool.pytest_env section in pyproject.toml
   cd ../
   poetry run -C api bash dev/pytest/pytest_all_tests.sh