Вы не можете выбрать более 25 тем Темы должны начинаться с буквы или цифры, могут содержать дефисы(-) и должны содержать не более 35 символов.
Shota Totsuka 430e100142
refactor: Add @staticmethod decorator in `api/core` (#7652)
1 год назад
..
.idea fix nltk averaged_perceptron_tagger download and fix score limit is none (#7582) 1 год назад
.vscode chore: remove .idea and .vscode from root path (#7437) 1 год назад
configs chore(api/configs): apply ruff reformat (#7590) 1 год назад
constants chore(api): Introduce Ruff Formatter. (#7291) 1 год назад
contexts chore(api): Introduce Ruff Formatter. (#7291) 1 год назад
controllers catch openai rate limit error (#7658) 1 год назад
core refactor: Add @staticmethod decorator in `api/core` (#7652) 1 год назад
docker fix: use LOG_LEVEL for celery startup (#7628) 1 год назад
events feat: custom app icon (#7196) 1 год назад
extensions fix(storage): 🐛 Create S3 bucket if it doesn't exist (#7514) 1 год назад
fields feat: Sort conversations by updated_at desc (#7348) 1 год назад
libs feat: custom app icon (#7196) 1 год назад
migrations chore(database): Rename table name from `workflow__conversation_variables` to `workflow_conversation_variables`. (#7432) 1 год назад
models Feat/7134 use dataset api create a dataset with permission (#7508) 1 год назад
schedule chore(api): Introduce Ruff Formatter. (#7291) 1 год назад
services catch openai rate limit error (#7658) 1 год назад
tasks chore(api/tasks): apply ruff reformatting (#7594) 1 год назад
templates feat: implement forgot password feature (#5534) 1 год назад
tests chore(api/tests): apply ruff reformat #7590 (#7591) 1 год назад
.dockerignore build: support Poetry for depencencies tool in api's Dockerfile (#5105) 1 год назад
.env.example Feat/7134 use dataset api create a dataset with permission (#7508) 1 год назад
Dockerfile fix nltk averaged_perceptron_tagger download and fix score limit is none (#7582) 1 год назад
README.md Chores: add missing profile for middleware docker compose cmd and fix ssrf-proxy doc link (#6372) 1 год назад
app.py chore(api): Introduce Ruff Formatter. (#7291) 1 год назад
commands.py chore(api): Introduce Ruff Formatter. (#7291) 1 год назад
poetry.lock feat: Introduce Ark SDK v3 and ensure compatibility with models of SDK v2 (#7579) 1 год назад
poetry.toml build: initial support for poetry build tool (#4513) 1 год назад
pyproject.toml chore(api/controllers): Apply Ruff Formatter. (#7645) 1 год назад

README.md

Dify Backend API

Usage

[!IMPORTANT] In the v0.6.12 release, we deprecated pip as the package management tool for Dify API Backend service and replaced it with poetry.

  1. Start the docker-compose stack

The backend require some middleware, including PostgreSQL, Redis, and Weaviate, which can be started together using docker-compose.

   cd ../docker
   cp middleware.env.example middleware.env
   # change the profile to other vector database if you are not using weaviate
   docker compose -f docker-compose.middleware.yaml --profile weaviate -p dify up -d
   cd ../api
  1. Copy .env.example to .env
  2. Generate a SECRET_KEY in the .env file.
   sed -i "/^SECRET_KEY=/c\SECRET_KEY=$(openssl rand -base64 42)" .env
   secret_key=$(openssl rand -base64 42)
   sed -i '' "/^SECRET_KEY=/c\\
   SECRET_KEY=${secret_key}" .env
  1. Create environment.

Dify API service uses Poetry to manage dependencies. You can execute poetry shell to activate the environment.

  1. Install dependencies
   poetry env use 3.10
   poetry install

In case of contributors missing to update dependencies for pyproject.toml, you can perform the following shell instead.

   poetry shell                                               # activate current environment
   poetry add $(cat requirements.txt)           # install dependencies of production and update pyproject.toml
   poetry add $(cat requirements-dev.txt) --group dev    # install dependencies of development and update pyproject.toml
  1. Run migrate

Before the first launch, migrate the database to the latest version.

   poetry run python -m flask db upgrade
  1. Start backend
   poetry run python -m flask run --host 0.0.0.0 --port=5001 --debug
  1. Start Dify web service.
  2. Setup your application by visiting http://localhost:3000
  3. If you need to debug local async processing, please start the worker service.
   poetry run python -m celery -A app.celery worker -P gevent -c 1 --loglevel INFO -Q dataset,generation,mail,ops_trace,app_deletion

The started celery app handles the async tasks, e.g. dataset importing and documents indexing.

Testing

  1. Install dependencies for both the backend and the test environment
   poetry install --with dev
  1. Run the tests locally with mocked system environment variables in tool.pytest_env section in pyproject.toml
   cd ../
   poetry run -C api bash dev/pytest/pytest_all_tests.sh