You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
-LAN- 430ca3322b
chore(dependency): bump gunicorn to 23.0 (#11560)
10 kuukautta sitten
..
.idea fix nltk averaged_perceptron_tagger download and fix score limit is none (#7582) 1 vuosi sitten
.vscode feat/enhance the multi-modal support (#8818) 1 vuosi sitten
configs Lindorm vdb (#11574) 10 kuukautta sitten
constants fix: support mdx files close #11557 (#11565) 10 kuukautta sitten
contexts feat/enhance the multi-modal support (#8818) 1 vuosi sitten
controllers fix: tags could not be saved when the Workflow Tool was created (#11481) 10 kuukautta sitten
core feat(model): add vertex_ai Gemini 2.0 Flash Exp (#11604) 10 kuukautta sitten
docker feat: integrate opendal storage (#11508) 10 kuukautta sitten
events chore: bump minimum supported Python version to 3.11 (#10386) 11 kuukautta sitten
extensions fix: better opendal tests (#11569) 10 kuukautta sitten
factories Feat: upgrade variable assigner (#11285) 11 kuukautta sitten
fields Feat: continue on error (#11458) 10 kuukautta sitten
libs fix(api): throw error when notion block can not find (#11433) 10 kuukautta sitten
migrations Feat: continue on error (#11458) 10 kuukautta sitten
models Feat: continue on error (#11458) 10 kuukautta sitten
schedule improve message clean logic (#11487) 10 kuukautta sitten
services Fix: RateLimit requests were not released when a streaming generation exception occurred (#11540) 10 kuukautta sitten
tasks fix: update DocumentIsPausedError (#11405) 11 kuukautta sitten
templates Feat/new login (#8120) 1 vuosi sitten
tests Lindorm vdb (#11574) 10 kuukautta sitten
.dockerignore build: support Poetry for depencencies tool in api's Dockerfile (#5105) 1 vuosi sitten
.env.example Lindorm vdb (#11574) 10 kuukautta sitten
.ruff.toml chore(lint): sort __all__ definitions (#11243) 11 kuukautta sitten
Dockerfile chore(api/Dockerfile): Bump perl to 0.40.0-8 (#11234) 11 kuukautta sitten
README.md chore: update base image to Python 3.12 in Dockerfile (#10358) 11 kuukautta sitten
app.py refactor: assembling the app features in modular way (#9129) 11 kuukautta sitten
app_factory.py refactor: assembling the app features in modular way (#9129) 11 kuukautta sitten
commands.py fix: some typos using typos (#11374) 11 kuukautta sitten
dify_app.py refactor: assembling the app features in modular way (#9129) 11 kuukautta sitten
poetry.lock chore(dependency): bump gunicorn to 23.0 (#11560) 10 kuukautta sitten
poetry.toml build: initial support for poetry build tool (#4513) 1 vuosi sitten
pyproject.toml chore(dependency): bump gunicorn to 23.0 (#11560) 10 kuukautta sitten
pytest.ini feat: Add support for TEI API key authentication (#11006) 11 kuukautta sitten

README.md

Dify Backend API

Usage

[!IMPORTANT] In the v0.6.12 release, we deprecated pip as the package management tool for Dify API Backend service and replaced it with poetry.

  1. Start the docker-compose stack

The backend require some middleware, including PostgreSQL, Redis, and Weaviate, which can be started together using docker-compose.

   cd ../docker
   cp middleware.env.example middleware.env
   # change the profile to other vector database if you are not using weaviate
   docker compose -f docker-compose.middleware.yaml --profile weaviate -p dify up -d
   cd ../api
  1. Copy .env.example to .env
   cp .env.example .env 
  1. Generate a SECRET_KEY in the .env file.

bash for Linux

   sed -i "/^SECRET_KEY=/c\SECRET_KEY=$(openssl rand -base64 42)" .env

bash for Mac

   secret_key=$(openssl rand -base64 42)
   sed -i '' "/^SECRET_KEY=/c\\
   SECRET_KEY=${secret_key}" .env
  1. Create environment.

Dify API service uses Poetry to manage dependencies. You can execute poetry shell to activate the environment.

  1. Install dependencies
   poetry env use 3.12
   poetry install
  1. Run migrate

Before the first launch, migrate the database to the latest version.

   poetry run python -m flask db upgrade
  1. Start backend
   poetry run python -m flask run --host 0.0.0.0 --port=5001 --debug
  1. Start Dify web service.
  2. Setup your application by visiting http://localhost:3000
  3. If you need to handle and debug the async tasks (e.g. dataset importing and documents indexing), please start the worker service.
   poetry run python -m celery -A app.celery worker -P gevent -c 1 --loglevel INFO -Q dataset,generation,mail,ops_trace,app_deletion

Testing

  1. Install dependencies for both the backend and the test environment
   poetry install -C api --with dev
  1. Run the tests locally with mocked system environment variables in tool.pytest_env section in pyproject.toml
   poetry run -C api bash dev/pytest/pytest_all_tests.sh