| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434 | 
							- import json
 - import logging
 - from collections.abc import Generator
 - from copy import deepcopy
 - from typing import Any, Union
 - 
 - from core.agent.base_agent_runner import BaseAgentRunner
 - from core.app.apps.base_app_queue_manager import PublishFrom
 - from core.app.entities.queue_entities import QueueAgentThoughtEvent, QueueMessageEndEvent, QueueMessageFileEvent
 - from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta, LLMUsage
 - from core.model_runtime.entities.message_entities import (
 -     AssistantPromptMessage,
 -     PromptMessage,
 -     PromptMessageContentType,
 -     SystemPromptMessage,
 -     TextPromptMessageContent,
 -     ToolPromptMessage,
 -     UserPromptMessage,
 - )
 - from core.prompt.agent_history_prompt_transform import AgentHistoryPromptTransform
 - from core.tools.entities.tool_entities import ToolInvokeMeta
 - from core.tools.tool_engine import ToolEngine
 - from models.model import Message
 - 
 - logger = logging.getLogger(__name__)
 - 
 - class FunctionCallAgentRunner(BaseAgentRunner):
 - 
 -     def run(self, 
 -             message: Message, query: str, **kwargs: Any
 -     ) -> Generator[LLMResultChunk, None, None]:
 -         """
 -         Run FunctionCall agent application
 -         """
 -         self.query = query
 -         app_generate_entity = self.application_generate_entity
 - 
 -         app_config = self.app_config
 - 
 -         # convert tools into ModelRuntime Tool format
 -         tool_instances, prompt_messages_tools = self._init_prompt_tools()
 - 
 -         iteration_step = 1
 -         max_iteration_steps = min(app_config.agent.max_iteration, 5) + 1
 - 
 -         # continue to run until there is not any tool call
 -         function_call_state = True
 -         llm_usage = {
 -             'usage': None
 -         }
 -         final_answer = ''
 - 
 -         def increase_usage(final_llm_usage_dict: dict[str, LLMUsage], usage: LLMUsage):
 -             if not final_llm_usage_dict['usage']:
 -                 final_llm_usage_dict['usage'] = usage
 -             else:
 -                 llm_usage = final_llm_usage_dict['usage']
 -                 llm_usage.prompt_tokens += usage.prompt_tokens
 -                 llm_usage.completion_tokens += usage.completion_tokens
 -                 llm_usage.prompt_price += usage.prompt_price
 -                 llm_usage.completion_price += usage.completion_price
 - 
 -         model_instance = self.model_instance
 - 
 -         while function_call_state and iteration_step <= max_iteration_steps:
 -             function_call_state = False
 - 
 -             if iteration_step == max_iteration_steps:
 -                 # the last iteration, remove all tools
 -                 prompt_messages_tools = []
 - 
 -             message_file_ids = []
 -             agent_thought = self.create_agent_thought(
 -                 message_id=message.id,
 -                 message='',
 -                 tool_name='',
 -                 tool_input='',
 -                 messages_ids=message_file_ids
 -             )
 - 
 -             # recalc llm max tokens
 -             prompt_messages = self._organize_prompt_messages()
 -             self.recalc_llm_max_tokens(self.model_config, prompt_messages)
 -             # invoke model
 -             chunks: Union[Generator[LLMResultChunk, None, None], LLMResult] = model_instance.invoke_llm(
 -                 prompt_messages=prompt_messages,
 -                 model_parameters=app_generate_entity.model_config.parameters,
 -                 tools=prompt_messages_tools,
 -                 stop=app_generate_entity.model_config.stop,
 -                 stream=self.stream_tool_call,
 -                 user=self.user_id,
 -                 callbacks=[],
 -             )
 - 
 -             tool_calls: list[tuple[str, str, dict[str, Any]]] = []
 - 
 -             # save full response
 -             response = ''
 - 
 -             # save tool call names and inputs
 -             tool_call_names = ''
 -             tool_call_inputs = ''
 - 
 -             current_llm_usage = None
 - 
 -             if self.stream_tool_call:
 -                 is_first_chunk = True
 -                 for chunk in chunks:
 -                     if is_first_chunk:
 -                         self.queue_manager.publish(QueueAgentThoughtEvent(
 -                             agent_thought_id=agent_thought.id
 -                         ), PublishFrom.APPLICATION_MANAGER)
 -                         is_first_chunk = False
 -                     # check if there is any tool call
 -                     if self.check_tool_calls(chunk):
 -                         function_call_state = True
 -                         tool_calls.extend(self.extract_tool_calls(chunk))
 -                         tool_call_names = ';'.join([tool_call[1] for tool_call in tool_calls])
 -                         try:
 -                             tool_call_inputs = json.dumps({
 -                                 tool_call[1]: tool_call[2] for tool_call in tool_calls
 -                             }, ensure_ascii=False)
 -                         except json.JSONDecodeError as e:
 -                             # ensure ascii to avoid encoding error
 -                             tool_call_inputs = json.dumps({
 -                                 tool_call[1]: tool_call[2] for tool_call in tool_calls
 -                             })
 - 
 -                     if chunk.delta.message and chunk.delta.message.content:
 -                         if isinstance(chunk.delta.message.content, list):
 -                             for content in chunk.delta.message.content:
 -                                 response += content.data
 -                         else:
 -                             response += chunk.delta.message.content
 - 
 -                     if chunk.delta.usage:
 -                         increase_usage(llm_usage, chunk.delta.usage)
 -                         current_llm_usage = chunk.delta.usage
 - 
 -                     yield chunk
 -             else:
 -                 result: LLMResult = chunks
 -                 # check if there is any tool call
 -                 if self.check_blocking_tool_calls(result):
 -                     function_call_state = True
 -                     tool_calls.extend(self.extract_blocking_tool_calls(result))
 -                     tool_call_names = ';'.join([tool_call[1] for tool_call in tool_calls])
 -                     try:
 -                         tool_call_inputs = json.dumps({
 -                             tool_call[1]: tool_call[2] for tool_call in tool_calls
 -                         }, ensure_ascii=False)
 -                     except json.JSONDecodeError as e:
 -                         # ensure ascii to avoid encoding error
 -                         tool_call_inputs = json.dumps({
 -                             tool_call[1]: tool_call[2] for tool_call in tool_calls
 -                         })
 - 
 -                 if result.usage:
 -                     increase_usage(llm_usage, result.usage)
 -                     current_llm_usage = result.usage
 - 
 -                 if result.message and result.message.content:
 -                     if isinstance(result.message.content, list):
 -                         for content in result.message.content:
 -                             response += content.data
 -                     else:
 -                         response += result.message.content
 - 
 -                 if not result.message.content:
 -                     result.message.content = ''
 - 
 -                 self.queue_manager.publish(QueueAgentThoughtEvent(
 -                     agent_thought_id=agent_thought.id
 -                 ), PublishFrom.APPLICATION_MANAGER)
 -                 
 -                 yield LLMResultChunk(
 -                     model=model_instance.model,
 -                     prompt_messages=result.prompt_messages,
 -                     system_fingerprint=result.system_fingerprint,
 -                     delta=LLMResultChunkDelta(
 -                         index=0,
 -                         message=result.message,
 -                         usage=result.usage,
 -                     )
 -                 )
 - 
 -             assistant_message = AssistantPromptMessage(
 -                 content='',
 -                 tool_calls=[]
 -             )
 -             if tool_calls:
 -                 assistant_message.tool_calls=[
 -                     AssistantPromptMessage.ToolCall(
 -                         id=tool_call[0],
 -                         type='function',
 -                         function=AssistantPromptMessage.ToolCall.ToolCallFunction(
 -                             name=tool_call[1],
 -                             arguments=json.dumps(tool_call[2], ensure_ascii=False)
 -                         )
 -                     ) for tool_call in tool_calls
 -                 ]
 -             else:
 -                 assistant_message.content = response
 -             
 -             self._current_thoughts.append(assistant_message)
 - 
 -             # save thought
 -             self.save_agent_thought(
 -                 agent_thought=agent_thought, 
 -                 tool_name=tool_call_names,
 -                 tool_input=tool_call_inputs,
 -                 thought=response,
 -                 tool_invoke_meta=None,
 -                 observation=None,
 -                 answer=response,
 -                 messages_ids=[],
 -                 llm_usage=current_llm_usage
 -             )
 -             self.queue_manager.publish(QueueAgentThoughtEvent(
 -                 agent_thought_id=agent_thought.id
 -             ), PublishFrom.APPLICATION_MANAGER)
 -             
 -             final_answer += response + '\n'
 - 
 -             # call tools
 -             tool_responses = []
 -             for tool_call_id, tool_call_name, tool_call_args in tool_calls:
 -                 tool_instance = tool_instances.get(tool_call_name)
 -                 if not tool_instance:
 -                     tool_response = {
 -                         "tool_call_id": tool_call_id,
 -                         "tool_call_name": tool_call_name,
 -                         "tool_response": f"there is not a tool named {tool_call_name}",
 -                         "meta": ToolInvokeMeta.error_instance(f"there is not a tool named {tool_call_name}").to_dict()
 -                     }
 -                 else:
 -                     # invoke tool
 -                     tool_invoke_response, message_files, tool_invoke_meta = ToolEngine.agent_invoke(
 -                         tool=tool_instance,
 -                         tool_parameters=tool_call_args,
 -                         user_id=self.user_id,
 -                         tenant_id=self.tenant_id,
 -                         message=self.message,
 -                         invoke_from=self.application_generate_entity.invoke_from,
 -                         agent_tool_callback=self.agent_callback,
 -                     )
 -                     # publish files
 -                     for message_file, save_as in message_files:
 -                         if save_as:
 -                             self.variables_pool.set_file(tool_name=tool_call_name, value=message_file.id, name=save_as)
 - 
 -                         # publish message file
 -                         self.queue_manager.publish(QueueMessageFileEvent(
 -                             message_file_id=message_file.id
 -                         ), PublishFrom.APPLICATION_MANAGER)
 -                         # add message file ids
 -                         message_file_ids.append(message_file.id)
 -                     
 -                     tool_response = {
 -                         "tool_call_id": tool_call_id,
 -                         "tool_call_name": tool_call_name,
 -                         "tool_response": tool_invoke_response,
 -                         "meta": tool_invoke_meta.to_dict()
 -                     }
 -                 
 -                 tool_responses.append(tool_response)
 -                 if tool_response['tool_response'] is not None:
 -                     self._current_thoughts.append(
 -                         ToolPromptMessage(
 -                             content=tool_response['tool_response'],
 -                             tool_call_id=tool_call_id,
 -                             name=tool_call_name,
 -                         )
 -                     ) 
 - 
 -             if len(tool_responses) > 0:
 -                 # save agent thought
 -                 self.save_agent_thought(
 -                     agent_thought=agent_thought, 
 -                     tool_name=None,
 -                     tool_input=None,
 -                     thought=None, 
 -                     tool_invoke_meta={
 -                         tool_response['tool_call_name']: tool_response['meta'] 
 -                         for tool_response in tool_responses
 -                     },
 -                     observation={
 -                         tool_response['tool_call_name']: tool_response['tool_response'] 
 -                         for tool_response in tool_responses
 -                     },
 -                     answer=None,
 -                     messages_ids=message_file_ids
 -                 )
 -                 self.queue_manager.publish(QueueAgentThoughtEvent(
 -                     agent_thought_id=agent_thought.id
 -                 ), PublishFrom.APPLICATION_MANAGER)
 - 
 -             # update prompt tool
 -             for prompt_tool in prompt_messages_tools:
 -                 self.update_prompt_message_tool(tool_instances[prompt_tool.name], prompt_tool)
 - 
 -             iteration_step += 1
 - 
 -         self.update_db_variables(self.variables_pool, self.db_variables_pool)
 -         # publish end event
 -         self.queue_manager.publish(QueueMessageEndEvent(llm_result=LLMResult(
 -             model=model_instance.model,
 -             prompt_messages=prompt_messages,
 -             message=AssistantPromptMessage(
 -                 content=final_answer
 -             ),
 -             usage=llm_usage['usage'] if llm_usage['usage'] else LLMUsage.empty_usage(),
 -             system_fingerprint=''
 -         )), PublishFrom.APPLICATION_MANAGER)
 - 
 -     def check_tool_calls(self, llm_result_chunk: LLMResultChunk) -> bool:
 -         """
 -         Check if there is any tool call in llm result chunk
 -         """
 -         if llm_result_chunk.delta.message.tool_calls:
 -             return True
 -         return False
 -     
 -     def check_blocking_tool_calls(self, llm_result: LLMResult) -> bool:
 -         """
 -         Check if there is any blocking tool call in llm result
 -         """
 -         if llm_result.message.tool_calls:
 -             return True
 -         return False
 - 
 -     def extract_tool_calls(self, llm_result_chunk: LLMResultChunk) -> Union[None, list[tuple[str, str, dict[str, Any]]]]:
 -         """
 -         Extract tool calls from llm result chunk
 - 
 -         Returns:
 -             List[Tuple[str, str, Dict[str, Any]]]: [(tool_call_id, tool_call_name, tool_call_args)]
 -         """
 -         tool_calls = []
 -         for prompt_message in llm_result_chunk.delta.message.tool_calls:
 -             tool_calls.append((
 -                 prompt_message.id,
 -                 prompt_message.function.name,
 -                 json.loads(prompt_message.function.arguments),
 -             ))
 - 
 -         return tool_calls
 -     
 -     def extract_blocking_tool_calls(self, llm_result: LLMResult) -> Union[None, list[tuple[str, str, dict[str, Any]]]]:
 -         """
 -         Extract blocking tool calls from llm result
 - 
 -         Returns:
 -             List[Tuple[str, str, Dict[str, Any]]]: [(tool_call_id, tool_call_name, tool_call_args)]
 -         """
 -         tool_calls = []
 -         for prompt_message in llm_result.message.tool_calls:
 -             tool_calls.append((
 -                 prompt_message.id,
 -                 prompt_message.function.name,
 -                 json.loads(prompt_message.function.arguments),
 -             ))
 - 
 -         return tool_calls
 - 
 -     def _init_system_message(self, prompt_template: str, prompt_messages: list[PromptMessage] = None) -> list[PromptMessage]:
 -         """
 -         Initialize system message
 -         """
 -         if not prompt_messages and prompt_template:
 -             return [
 -                 SystemPromptMessage(content=prompt_template),
 -             ]
 -         
 -         if prompt_messages and not isinstance(prompt_messages[0], SystemPromptMessage) and prompt_template:
 -             prompt_messages.insert(0, SystemPromptMessage(content=prompt_template))
 - 
 -         return prompt_messages
 - 
 -     def _organize_user_query(self, query,  prompt_messages: list[PromptMessage] = None) -> list[PromptMessage]:
 -         """
 -         Organize user query
 -         """
 -         if self.files:
 -             prompt_message_contents = [TextPromptMessageContent(data=query)]
 -             for file_obj in self.files:
 -                 prompt_message_contents.append(file_obj.prompt_message_content)
 - 
 -             prompt_messages.append(UserPromptMessage(content=prompt_message_contents))
 -         else:
 -             prompt_messages.append(UserPromptMessage(content=query))
 - 
 -         return prompt_messages
 -     
 -     def _clear_user_prompt_image_messages(self, prompt_messages: list[PromptMessage]) -> list[PromptMessage]:
 -         """
 -         As for now, gpt supports both fc and vision at the first iteration.
 -         We need to remove the image messages from the prompt messages at the first iteration.
 -         """
 -         prompt_messages = deepcopy(prompt_messages)
 - 
 -         for prompt_message in prompt_messages:
 -             if isinstance(prompt_message, UserPromptMessage):
 -                 if isinstance(prompt_message.content, list):
 -                     prompt_message.content = '\n'.join([
 -                         content.data if content.type == PromptMessageContentType.TEXT else 
 -                         '[image]' if content.type == PromptMessageContentType.IMAGE else
 -                         '[file]' 
 -                         for content in prompt_message.content 
 -                     ])
 - 
 -         return prompt_messages
 - 
 -     def _organize_prompt_messages(self):
 -         prompt_template = self.app_config.prompt_template.simple_prompt_template or ''
 -         self.history_prompt_messages = self._init_system_message(prompt_template, self.history_prompt_messages)
 -         query_prompt_messages = self._organize_user_query(self.query, [])
 - 
 -         self.history_prompt_messages = AgentHistoryPromptTransform(
 -             model_config=self.model_config,
 -             prompt_messages=[*query_prompt_messages, *self._current_thoughts],
 -             history_messages=self.history_prompt_messages,
 -             memory=self.memory
 -         ).get_prompt()
 - 
 -         prompt_messages = [
 -             *self.history_prompt_messages,
 -             *query_prompt_messages,
 -             *self._current_thoughts
 -         ]
 -         if len(self._current_thoughts) != 0:
 -             # clear messages after the first iteration
 -             prompt_messages = self._clear_user_prompt_image_messages(prompt_messages)
 -         return prompt_messages
 
 
  |