You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

document.py 18KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433
  1. import json
  2. from flask import request
  3. from flask_restful import marshal, reqparse
  4. from sqlalchemy import desc, select
  5. from werkzeug.exceptions import NotFound
  6. import services
  7. from controllers.common.errors import FilenameNotExistsError
  8. from controllers.service_api import api
  9. from controllers.service_api.app.error import (
  10. FileTooLargeError,
  11. NoFileUploadedError,
  12. ProviderNotInitializeError,
  13. TooManyFilesError,
  14. UnsupportedFileTypeError,
  15. )
  16. from controllers.service_api.dataset.error import (
  17. ArchivedDocumentImmutableError,
  18. DocumentIndexingError,
  19. )
  20. from controllers.service_api.wraps import DatasetApiResource, cloud_edition_billing_resource_check
  21. from core.errors.error import ProviderTokenNotInitError
  22. from extensions.ext_database import db
  23. from fields.document_fields import document_fields, document_status_fields
  24. from libs.login import current_user
  25. from models.dataset import Dataset, Document, DocumentSegment
  26. from services.dataset_service import DocumentService
  27. from services.entities.knowledge_entities.knowledge_entities import KnowledgeConfig
  28. from services.file_service import FileService
  29. class DocumentAddByTextApi(DatasetApiResource):
  30. """Resource for documents."""
  31. @cloud_edition_billing_resource_check("vector_space", "dataset")
  32. @cloud_edition_billing_resource_check("documents", "dataset")
  33. def post(self, tenant_id, dataset_id):
  34. """Create document by text."""
  35. parser = reqparse.RequestParser()
  36. parser.add_argument("name", type=str, required=True, nullable=False, location="json")
  37. parser.add_argument("text", type=str, required=True, nullable=False, location="json")
  38. parser.add_argument("process_rule", type=dict, required=False, nullable=True, location="json")
  39. parser.add_argument("original_document_id", type=str, required=False, location="json")
  40. parser.add_argument("doc_form", type=str, default="text_model", required=False, nullable=False, location="json")
  41. parser.add_argument(
  42. "doc_language", type=str, default="English", required=False, nullable=False, location="json"
  43. )
  44. parser.add_argument(
  45. "indexing_technique", type=str, choices=Dataset.INDEXING_TECHNIQUE_LIST, nullable=False, location="json"
  46. )
  47. parser.add_argument("retrieval_model", type=dict, required=False, nullable=True, location="json")
  48. parser.add_argument("embedding_model", type=str, required=False, nullable=True, location="json")
  49. parser.add_argument("embedding_model_provider", type=str, required=False, nullable=True, location="json")
  50. args = parser.parse_args()
  51. dataset_id = str(dataset_id)
  52. tenant_id = str(tenant_id)
  53. dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
  54. if not dataset:
  55. raise ValueError("Dataset does not exist.")
  56. if not dataset.indexing_technique and not args["indexing_technique"]:
  57. raise ValueError("indexing_technique is required.")
  58. text = args.get("text")
  59. name = args.get("name")
  60. if text is None or name is None:
  61. raise ValueError("Both 'text' and 'name' must be non-null values.")
  62. upload_file = FileService.upload_text(text=str(text), text_name=str(name))
  63. data_source = {
  64. "type": "upload_file",
  65. "info_list": {"data_source_type": "upload_file", "file_info_list": {"file_ids": [upload_file.id]}},
  66. }
  67. args["data_source"] = data_source
  68. knowledge_config = KnowledgeConfig(**args)
  69. # validate args
  70. DocumentService.document_create_args_validate(knowledge_config)
  71. try:
  72. documents, batch = DocumentService.save_document_with_dataset_id(
  73. dataset=dataset,
  74. knowledge_config=knowledge_config,
  75. account=current_user,
  76. dataset_process_rule=dataset.latest_process_rule if "process_rule" not in args else None,
  77. created_from="api",
  78. )
  79. except ProviderTokenNotInitError as ex:
  80. raise ProviderNotInitializeError(ex.description)
  81. document = documents[0]
  82. documents_and_batch_fields = {"document": marshal(document, document_fields), "batch": batch}
  83. return documents_and_batch_fields, 200
  84. class DocumentUpdateByTextApi(DatasetApiResource):
  85. """Resource for update documents."""
  86. @cloud_edition_billing_resource_check("vector_space", "dataset")
  87. def post(self, tenant_id, dataset_id, document_id):
  88. """Update document by text."""
  89. parser = reqparse.RequestParser()
  90. parser.add_argument("name", type=str, required=False, nullable=True, location="json")
  91. parser.add_argument("text", type=str, required=False, nullable=True, location="json")
  92. parser.add_argument("process_rule", type=dict, required=False, nullable=True, location="json")
  93. parser.add_argument("doc_form", type=str, default="text_model", required=False, nullable=False, location="json")
  94. parser.add_argument(
  95. "doc_language", type=str, default="English", required=False, nullable=False, location="json"
  96. )
  97. parser.add_argument("retrieval_model", type=dict, required=False, nullable=False, location="json")
  98. args = parser.parse_args()
  99. dataset_id = str(dataset_id)
  100. tenant_id = str(tenant_id)
  101. dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
  102. if not dataset:
  103. raise ValueError("Dataset does not exist.")
  104. # indexing_technique is already set in dataset since this is an update
  105. args["indexing_technique"] = dataset.indexing_technique
  106. if args["text"]:
  107. text = args.get("text")
  108. name = args.get("name")
  109. if text is None or name is None:
  110. raise ValueError("Both text and name must be strings.")
  111. upload_file = FileService.upload_text(text=str(text), text_name=str(name))
  112. data_source = {
  113. "type": "upload_file",
  114. "info_list": {"data_source_type": "upload_file", "file_info_list": {"file_ids": [upload_file.id]}},
  115. }
  116. args["data_source"] = data_source
  117. # validate args
  118. args["original_document_id"] = str(document_id)
  119. knowledge_config = KnowledgeConfig(**args)
  120. DocumentService.document_create_args_validate(knowledge_config)
  121. try:
  122. documents, batch = DocumentService.save_document_with_dataset_id(
  123. dataset=dataset,
  124. knowledge_config=knowledge_config,
  125. account=current_user,
  126. dataset_process_rule=dataset.latest_process_rule if "process_rule" not in args else None,
  127. created_from="api",
  128. )
  129. except ProviderTokenNotInitError as ex:
  130. raise ProviderNotInitializeError(ex.description)
  131. document = documents[0]
  132. documents_and_batch_fields = {"document": marshal(document, document_fields), "batch": batch}
  133. return documents_and_batch_fields, 200
  134. class DocumentAddByFileApi(DatasetApiResource):
  135. """Resource for documents."""
  136. @cloud_edition_billing_resource_check("vector_space", "dataset")
  137. @cloud_edition_billing_resource_check("documents", "dataset")
  138. def post(self, tenant_id, dataset_id):
  139. """Create document by upload file."""
  140. args = {}
  141. if "data" in request.form:
  142. args = json.loads(request.form["data"])
  143. if "doc_form" not in args:
  144. args["doc_form"] = "text_model"
  145. if "doc_language" not in args:
  146. args["doc_language"] = "English"
  147. # get dataset info
  148. dataset_id = str(dataset_id)
  149. tenant_id = str(tenant_id)
  150. dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
  151. if not dataset:
  152. raise ValueError("Dataset does not exist.")
  153. if not dataset.indexing_technique and not args.get("indexing_technique"):
  154. raise ValueError("indexing_technique is required.")
  155. # save file info
  156. file = request.files["file"]
  157. # check file
  158. if "file" not in request.files:
  159. raise NoFileUploadedError()
  160. if len(request.files) > 1:
  161. raise TooManyFilesError()
  162. if not file.filename:
  163. raise FilenameNotExistsError
  164. upload_file = FileService.upload_file(
  165. filename=file.filename,
  166. content=file.read(),
  167. mimetype=file.mimetype,
  168. user=current_user,
  169. source="datasets",
  170. )
  171. data_source = {
  172. "type": "upload_file",
  173. "info_list": {"data_source_type": "upload_file", "file_info_list": {"file_ids": [upload_file.id]}},
  174. }
  175. args["data_source"] = data_source
  176. # validate args
  177. knowledge_config = KnowledgeConfig(**args)
  178. DocumentService.document_create_args_validate(knowledge_config)
  179. try:
  180. documents, batch = DocumentService.save_document_with_dataset_id(
  181. dataset=dataset,
  182. knowledge_config=knowledge_config,
  183. account=dataset.created_by_account,
  184. dataset_process_rule=dataset.latest_process_rule if "process_rule" not in args else None,
  185. created_from="api",
  186. )
  187. except ProviderTokenNotInitError as ex:
  188. raise ProviderNotInitializeError(ex.description)
  189. document = documents[0]
  190. documents_and_batch_fields = {"document": marshal(document, document_fields), "batch": batch}
  191. return documents_and_batch_fields, 200
  192. class DocumentUpdateByFileApi(DatasetApiResource):
  193. """Resource for update documents."""
  194. @cloud_edition_billing_resource_check("vector_space", "dataset")
  195. def post(self, tenant_id, dataset_id, document_id):
  196. """Update document by upload file."""
  197. args = {}
  198. if "data" in request.form:
  199. args = json.loads(request.form["data"])
  200. if "doc_form" not in args:
  201. args["doc_form"] = "text_model"
  202. if "doc_language" not in args:
  203. args["doc_language"] = "English"
  204. # get dataset info
  205. dataset_id = str(dataset_id)
  206. tenant_id = str(tenant_id)
  207. dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
  208. if not dataset:
  209. raise ValueError("Dataset does not exist.")
  210. # indexing_technique is already set in dataset since this is an update
  211. args["indexing_technique"] = dataset.indexing_technique
  212. if "file" in request.files:
  213. # save file info
  214. file = request.files["file"]
  215. if len(request.files) > 1:
  216. raise TooManyFilesError()
  217. if not file.filename:
  218. raise FilenameNotExistsError
  219. try:
  220. upload_file = FileService.upload_file(
  221. filename=file.filename,
  222. content=file.read(),
  223. mimetype=file.mimetype,
  224. user=current_user,
  225. source="datasets",
  226. )
  227. except services.errors.file.FileTooLargeError as file_too_large_error:
  228. raise FileTooLargeError(file_too_large_error.description)
  229. except services.errors.file.UnsupportedFileTypeError:
  230. raise UnsupportedFileTypeError()
  231. data_source = {
  232. "type": "upload_file",
  233. "info_list": {"data_source_type": "upload_file", "file_info_list": {"file_ids": [upload_file.id]}},
  234. }
  235. args["data_source"] = data_source
  236. # validate args
  237. args["original_document_id"] = str(document_id)
  238. knowledge_config = KnowledgeConfig(**args)
  239. DocumentService.document_create_args_validate(knowledge_config)
  240. try:
  241. documents, batch = DocumentService.save_document_with_dataset_id(
  242. dataset=dataset,
  243. knowledge_config=knowledge_config,
  244. account=dataset.created_by_account,
  245. dataset_process_rule=dataset.latest_process_rule if "process_rule" not in args else None,
  246. created_from="api",
  247. )
  248. except ProviderTokenNotInitError as ex:
  249. raise ProviderNotInitializeError(ex.description)
  250. document = documents[0]
  251. documents_and_batch_fields = {"document": marshal(document, document_fields), "batch": document.batch}
  252. return documents_and_batch_fields, 200
  253. class DocumentDeleteApi(DatasetApiResource):
  254. def delete(self, tenant_id, dataset_id, document_id):
  255. """Delete document."""
  256. document_id = str(document_id)
  257. dataset_id = str(dataset_id)
  258. tenant_id = str(tenant_id)
  259. # get dataset info
  260. dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
  261. if not dataset:
  262. raise ValueError("Dataset does not exist.")
  263. document = DocumentService.get_document(dataset.id, document_id)
  264. # 404 if document not found
  265. if document is None:
  266. raise NotFound("Document Not Exists.")
  267. # 403 if document is archived
  268. if DocumentService.check_archived(document):
  269. raise ArchivedDocumentImmutableError()
  270. try:
  271. # delete document
  272. DocumentService.delete_document(document)
  273. except services.errors.document.DocumentIndexingError:
  274. raise DocumentIndexingError("Cannot delete document during indexing.")
  275. return 204
  276. class DocumentListApi(DatasetApiResource):
  277. def get(self, tenant_id, dataset_id):
  278. dataset_id = str(dataset_id)
  279. tenant_id = str(tenant_id)
  280. page = request.args.get("page", default=1, type=int)
  281. limit = request.args.get("limit", default=20, type=int)
  282. search = request.args.get("keyword", default=None, type=str)
  283. dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
  284. if not dataset:
  285. raise NotFound("Dataset not found.")
  286. query = select(Document).filter_by(dataset_id=str(dataset_id), tenant_id=tenant_id)
  287. if search:
  288. search = f"%{search}%"
  289. query = query.filter(Document.name.like(search))
  290. query = query.order_by(desc(Document.created_at), desc(Document.position))
  291. paginated_documents = db.paginate(select=query, page=page, per_page=limit, max_per_page=100, error_out=False)
  292. documents = paginated_documents.items
  293. response = {
  294. "data": marshal(documents, document_fields),
  295. "has_more": len(documents) == limit,
  296. "limit": limit,
  297. "total": paginated_documents.total,
  298. "page": page,
  299. }
  300. return response
  301. class DocumentIndexingStatusApi(DatasetApiResource):
  302. def get(self, tenant_id, dataset_id, batch):
  303. dataset_id = str(dataset_id)
  304. batch = str(batch)
  305. tenant_id = str(tenant_id)
  306. # get dataset
  307. dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
  308. if not dataset:
  309. raise NotFound("Dataset not found.")
  310. # get documents
  311. documents = DocumentService.get_batch_documents(dataset_id, batch)
  312. if not documents:
  313. raise NotFound("Documents not found.")
  314. documents_status = []
  315. for document in documents:
  316. completed_segments = (
  317. db.session.query(DocumentSegment)
  318. .filter(
  319. DocumentSegment.completed_at.isnot(None),
  320. DocumentSegment.document_id == str(document.id),
  321. DocumentSegment.status != "re_segment",
  322. )
  323. .count()
  324. )
  325. total_segments = (
  326. db.session.query(DocumentSegment)
  327. .filter(DocumentSegment.document_id == str(document.id), DocumentSegment.status != "re_segment")
  328. .count()
  329. )
  330. # Create a dictionary with document attributes and additional fields
  331. document_dict = {
  332. "id": document.id,
  333. "indexing_status": "paused" if document.is_paused else document.indexing_status,
  334. "processing_started_at": document.processing_started_at,
  335. "parsing_completed_at": document.parsing_completed_at,
  336. "cleaning_completed_at": document.cleaning_completed_at,
  337. "splitting_completed_at": document.splitting_completed_at,
  338. "completed_at": document.completed_at,
  339. "paused_at": document.paused_at,
  340. "error": document.error,
  341. "stopped_at": document.stopped_at,
  342. "completed_segments": completed_segments,
  343. "total_segments": total_segments,
  344. }
  345. documents_status.append(marshal(document_dict, document_status_fields))
  346. data = {"data": documents_status}
  347. return data
  348. api.add_resource(
  349. DocumentAddByTextApi,
  350. "/datasets/<uuid:dataset_id>/document/create_by_text",
  351. "/datasets/<uuid:dataset_id>/document/create-by-text",
  352. )
  353. api.add_resource(
  354. DocumentAddByFileApi,
  355. "/datasets/<uuid:dataset_id>/document/create_by_file",
  356. "/datasets/<uuid:dataset_id>/document/create-by-file",
  357. )
  358. api.add_resource(
  359. DocumentUpdateByTextApi,
  360. "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/update_by_text",
  361. "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/update-by-text",
  362. )
  363. api.add_resource(
  364. DocumentUpdateByFileApi,
  365. "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/update_by_file",
  366. "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/update-by-file",
  367. )
  368. api.add_resource(DocumentDeleteApi, "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>")
  369. api.add_resource(DocumentListApi, "/datasets/<uuid:dataset_id>/documents")
  370. api.add_resource(DocumentIndexingStatusApi, "/datasets/<uuid:dataset_id>/documents/<string:batch>/indexing-status")