| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455 | 
							- import json
 - 
 - from flask import current_app
 - from langchain.embeddings import OpenAIEmbeddings
 - 
 - from core.embedding.cached_embedding import CacheEmbedding
 - from core.index.keyword_table_index.keyword_table_index import KeywordTableIndex, KeywordTableConfig
 - from core.index.vector_index.vector_index import VectorIndex
 - from core.model_providers.model_factory import ModelFactory
 - from core.model_providers.models.embedding.openai_embedding import OpenAIEmbedding
 - from core.model_providers.models.entity.model_params import ModelKwargs
 - from core.model_providers.models.llm.openai_model import OpenAIModel
 - from core.model_providers.providers.openai_provider import OpenAIProvider
 - from models.dataset import Dataset
 - from models.provider import Provider, ProviderType
 - 
 - 
 - class IndexBuilder:
 -     @classmethod
 -     def get_index(cls, dataset: Dataset, indexing_technique: str, ignore_high_quality_check: bool = False):
 -         if indexing_technique == "high_quality":
 -             if not ignore_high_quality_check and dataset.indexing_technique != 'high_quality':
 -                 return None
 - 
 -             embedding_model = ModelFactory.get_embedding_model(
 -                 tenant_id=dataset.tenant_id,
 -                 model_provider_name=dataset.embedding_model_provider,
 -                 model_name=dataset.embedding_model
 -             )
 - 
 -             embeddings = CacheEmbedding(embedding_model)
 - 
 -             return VectorIndex(
 -                 dataset=dataset,
 -                 config=current_app.config,
 -                 embeddings=embeddings
 -             )
 -         elif indexing_technique == "economy":
 -             return KeywordTableIndex(
 -                 dataset=dataset,
 -                 config=KeywordTableConfig(
 -                     max_keywords_per_chunk=10
 -                 )
 -             )
 -         else:
 -             raise ValueError('Unknown indexing technique')
 - 
 -     @classmethod
 -     def get_default_high_quality_index(cls, dataset: Dataset):
 -         embeddings = OpenAIEmbeddings(openai_api_key=' ')
 -         return VectorIndex(
 -             dataset=dataset,
 -             config=current_app.config,
 -             embeddings=embeddings
 -         )
 
 
  |