| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196 |
- import contextvars
- import json
- import logging
- import time
- import uuid
- from collections.abc import Mapping
- from concurrent.futures import ThreadPoolExecutor
- from typing import Any
-
- import click
- from celery import shared_task # type: ignore
- from flask import current_app, g
- from sqlalchemy.orm import Session, sessionmaker
-
- from core.app.entities.app_invoke_entities import InvokeFrom, RagPipelineGenerateEntity
- from core.app.entities.rag_pipeline_invoke_entities import RagPipelineInvokeEntity
- from core.repositories.factory import DifyCoreRepositoryFactory
- from extensions.ext_database import db
- from extensions.ext_redis import redis_client
- from models.account import Account, Tenant
- from models.dataset import Pipeline
- from models.enums import WorkflowRunTriggeredFrom
- from models.workflow import Workflow, WorkflowNodeExecutionTriggeredFrom
- from services.file_service import FileService
-
-
- @shared_task(queue="pipeline")
- def rag_pipeline_run_task(
- rag_pipeline_invoke_entities_file_id: str,
- tenant_id: str,
- ):
- """
- Async Run rag pipeline
- :param rag_pipeline_invoke_entities: Rag pipeline invoke entities
- rag_pipeline_invoke_entities include:
- :param pipeline_id: Pipeline ID
- :param user_id: User ID
- :param tenant_id: Tenant ID
- :param workflow_id: Workflow ID
- :param invoke_from: Invoke source (debugger, published, etc.)
- :param streaming: Whether to stream results
- :param datasource_type: Type of datasource
- :param datasource_info: Datasource information dict
- :param batch: Batch identifier
- :param document_id: Document ID (optional)
- :param start_node_id: Starting node ID
- :param inputs: Input parameters dict
- :param workflow_execution_id: Workflow execution ID
- :param workflow_thread_pool_id: Thread pool ID for workflow execution
- """
- # run with threading, thread pool size is 10
-
- try:
- start_at = time.perf_counter()
- rag_pipeline_invoke_entities_content = FileService(db.engine).get_file_content(
- rag_pipeline_invoke_entities_file_id
- )
- rag_pipeline_invoke_entities = json.loads(rag_pipeline_invoke_entities_content)
-
- # Get Flask app object for thread context
- flask_app = current_app._get_current_object() # type: ignore
-
- with ThreadPoolExecutor(max_workers=10) as executor:
- futures = []
- for rag_pipeline_invoke_entity in rag_pipeline_invoke_entities:
- # Submit task to thread pool with Flask app
- future = executor.submit(run_single_rag_pipeline_task, rag_pipeline_invoke_entity, flask_app)
- futures.append(future)
-
- # Wait for all tasks to complete
- for future in futures:
- try:
- future.result() # This will raise any exceptions that occurred in the thread
- except Exception:
- logging.exception("Error in pipeline task")
- end_at = time.perf_counter()
- logging.info(
- click.style(
- f"tenant_id: {tenant_id} , Rag pipeline run completed. Latency: {end_at - start_at}s", fg="green"
- )
- )
- except Exception:
- logging.exception(click.style(f"Error running rag pipeline, tenant_id: {tenant_id}", fg="red"))
- raise
- finally:
- tenant_self_pipeline_task_queue = f"tenant_self_pipeline_task_queue:{tenant_id}"
- tenant_pipeline_task_key = f"tenant_pipeline_task:{tenant_id}"
-
- # Check if there are waiting tasks in the queue
- # Use rpop to get the next task from the queue (FIFO order)
- next_file_id = redis_client.rpop(tenant_self_pipeline_task_queue)
-
- if next_file_id:
- # Process the next waiting task
- # Keep the flag set to indicate a task is running
- redis_client.setex(tenant_pipeline_task_key, 60 * 60, 1)
- rag_pipeline_run_task.delay( # type: ignore
- rag_pipeline_invoke_entities_file_id=next_file_id.decode("utf-8")
- if isinstance(next_file_id, bytes)
- else next_file_id,
- tenant_id=tenant_id,
- )
- else:
- # No more waiting tasks, clear the flag
- redis_client.delete(tenant_pipeline_task_key)
- file_service = FileService(db.engine)
- file_service.delete_file(rag_pipeline_invoke_entities_file_id)
- db.session.close()
-
-
- def run_single_rag_pipeline_task(rag_pipeline_invoke_entity: Mapping[str, Any], flask_app):
- """Run a single RAG pipeline task within Flask app context."""
- # Create Flask application context for this thread
- with flask_app.app_context():
- try:
- rag_pipeline_invoke_entity_model = RagPipelineInvokeEntity(**rag_pipeline_invoke_entity)
- user_id = rag_pipeline_invoke_entity_model.user_id
- tenant_id = rag_pipeline_invoke_entity_model.tenant_id
- pipeline_id = rag_pipeline_invoke_entity_model.pipeline_id
- workflow_id = rag_pipeline_invoke_entity_model.workflow_id
- streaming = rag_pipeline_invoke_entity_model.streaming
- workflow_execution_id = rag_pipeline_invoke_entity_model.workflow_execution_id
- workflow_thread_pool_id = rag_pipeline_invoke_entity_model.workflow_thread_pool_id
- application_generate_entity = rag_pipeline_invoke_entity_model.application_generate_entity
-
- with Session(db.engine) as session:
- # Load required entities
- account = session.query(Account).where(Account.id == user_id).first()
- if not account:
- raise ValueError(f"Account {user_id} not found")
-
- tenant = session.query(Tenant).where(Tenant.id == tenant_id).first()
- if not tenant:
- raise ValueError(f"Tenant {tenant_id} not found")
- account.current_tenant = tenant
-
- pipeline = session.query(Pipeline).where(Pipeline.id == pipeline_id).first()
- if not pipeline:
- raise ValueError(f"Pipeline {pipeline_id} not found")
-
- workflow = session.query(Workflow).where(Workflow.id == pipeline.workflow_id).first()
- if not workflow:
- raise ValueError(f"Workflow {pipeline.workflow_id} not found")
-
- if workflow_execution_id is None:
- workflow_execution_id = str(uuid.uuid4())
-
- # Create application generate entity from dict
- entity = RagPipelineGenerateEntity(**application_generate_entity)
-
- # Create workflow repositories
- session_factory = sessionmaker(bind=db.engine, expire_on_commit=False)
- workflow_execution_repository = DifyCoreRepositoryFactory.create_workflow_execution_repository(
- session_factory=session_factory,
- user=account,
- app_id=entity.app_config.app_id,
- triggered_from=WorkflowRunTriggeredFrom.RAG_PIPELINE_RUN,
- )
-
- workflow_node_execution_repository = (
- DifyCoreRepositoryFactory.create_workflow_node_execution_repository(
- session_factory=session_factory,
- user=account,
- app_id=entity.app_config.app_id,
- triggered_from=WorkflowNodeExecutionTriggeredFrom.RAG_PIPELINE_RUN,
- )
- )
-
- # Set the user directly in g for preserve_flask_contexts
- g._login_user = account
-
- # Copy context for passing to pipeline generator
- context = contextvars.copy_context()
-
- # Direct execution without creating another thread
- # Since we're already in a thread pool, no need for nested threading
- from core.app.apps.pipeline.pipeline_generator import PipelineGenerator
-
- pipeline_generator = PipelineGenerator()
- # Using protected method intentionally for async execution
- pipeline_generator._generate( # type: ignore[attr-defined]
- flask_app=flask_app,
- context=context,
- pipeline=pipeline,
- workflow_id=workflow_id,
- user=account,
- application_generate_entity=entity,
- invoke_from=InvokeFrom.PUBLISHED,
- workflow_execution_repository=workflow_execution_repository,
- workflow_node_execution_repository=workflow_node_execution_repository,
- streaming=streaming,
- workflow_thread_pool_id=workflow_thread_pool_id,
- )
- except Exception:
- logging.exception("Error in pipeline task")
- raise
|