| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466 | 
							- import datetime
 - import json
 - import re
 - import tempfile
 - import time
 - from pathlib import Path
 - from typing import Optional, List
 - from langchain.text_splitter import RecursiveCharacterTextSplitter
 - 
 - from llama_index import SimpleDirectoryReader
 - from llama_index.data_structs import Node
 - from llama_index.data_structs.node_v2 import DocumentRelationship
 - from llama_index.node_parser import SimpleNodeParser, NodeParser
 - from llama_index.readers.file.base import DEFAULT_FILE_EXTRACTOR
 - from core.docstore.dataset_docstore import DatesetDocumentStore
 - from core.index.keyword_table_index import KeywordTableIndex
 - from core.index.readers.html_parser import HTMLParser
 - from core.index.readers.markdown_parser import MarkdownParser
 - from core.index.readers.pdf_parser import PDFParser
 - from core.index.spiltter.fixed_text_splitter import FixedRecursiveCharacterTextSplitter
 - from core.index.vector_index import VectorIndex
 - from core.llm.token_calculator import TokenCalculator
 - from extensions.ext_database import db
 - from extensions.ext_redis import redis_client
 - from extensions.ext_storage import storage
 - from models.dataset import Document, Dataset, DocumentSegment, DatasetProcessRule
 - from models.model import UploadFile
 - 
 - 
 - class IndexingRunner:
 - 
 -     def __init__(self, embedding_model_name: str = "text-embedding-ada-002"):
 -         self.storage = storage
 -         self.embedding_model_name = embedding_model_name
 - 
 -     def run(self, document: Document):
 -         """Run the indexing process."""
 -         # get dataset
 -         dataset = Dataset.query.filter_by(
 -             id=document.dataset_id
 -         ).first()
 - 
 -         if not dataset:
 -             raise ValueError("no dataset found")
 - 
 -         # load file
 -         text_docs = self._load_data(document)
 - 
 -         # get the process rule
 -         processing_rule = db.session.query(DatasetProcessRule). \
 -             filter(DatasetProcessRule.id == document.dataset_process_rule_id). \
 -             first()
 - 
 -         # get node parser for splitting
 -         node_parser = self._get_node_parser(processing_rule)
 - 
 -         # split to nodes
 -         nodes = self._step_split(
 -             text_docs=text_docs,
 -             node_parser=node_parser,
 -             dataset=dataset,
 -             document=document,
 -             processing_rule=processing_rule
 -         )
 - 
 -         # build index
 -         self._build_index(
 -             dataset=dataset,
 -             document=document,
 -             nodes=nodes
 -         )
 - 
 -     def run_in_splitting_status(self, document: Document):
 -         """Run the indexing process when the index_status is splitting."""
 -         # get dataset
 -         dataset = Dataset.query.filter_by(
 -             id=document.dataset_id
 -         ).first()
 - 
 -         if not dataset:
 -             raise ValueError("no dataset found")
 - 
 -         # get exist document_segment list and delete
 -         document_segments = DocumentSegment.query.filter_by(
 -             dataset_id=dataset.id,
 -             document_id=document.id
 -         ).all()
 -         db.session.delete(document_segments)
 -         db.session.commit()
 -         # load file
 -         text_docs = self._load_data(document)
 - 
 -         # get the process rule
 -         processing_rule = db.session.query(DatasetProcessRule). \
 -             filter(DatasetProcessRule.id == document.dataset_process_rule_id). \
 -             first()
 - 
 -         # get node parser for splitting
 -         node_parser = self._get_node_parser(processing_rule)
 - 
 -         # split to nodes
 -         nodes = self._step_split(
 -             text_docs=text_docs,
 -             node_parser=node_parser,
 -             dataset=dataset,
 -             document=document,
 -             processing_rule=processing_rule
 -         )
 - 
 -         # build index
 -         self._build_index(
 -             dataset=dataset,
 -             document=document,
 -             nodes=nodes
 -         )
 - 
 -     def run_in_indexing_status(self, document: Document):
 -         """Run the indexing process when the index_status is indexing."""
 -         # get dataset
 -         dataset = Dataset.query.filter_by(
 -             id=document.dataset_id
 -         ).first()
 - 
 -         if not dataset:
 -             raise ValueError("no dataset found")
 - 
 -         # get exist document_segment list and delete
 -         document_segments = DocumentSegment.query.filter_by(
 -             dataset_id=dataset.id,
 -             document_id=document.id
 -         ).all()
 -         nodes = []
 -         if document_segments:
 -             for document_segment in document_segments:
 -                 # transform segment to node
 -                 if document_segment.status != "completed":
 -                     relationships = {
 -                         DocumentRelationship.SOURCE: document_segment.document_id,
 -                     }
 - 
 -                     previous_segment = document_segment.previous_segment
 -                     if previous_segment:
 -                         relationships[DocumentRelationship.PREVIOUS] = previous_segment.index_node_id
 - 
 -                     next_segment = document_segment.next_segment
 -                     if next_segment:
 -                         relationships[DocumentRelationship.NEXT] = next_segment.index_node_id
 -                     node = Node(
 -                         doc_id=document_segment.index_node_id,
 -                         doc_hash=document_segment.index_node_hash,
 -                         text=document_segment.content,
 -                         extra_info=None,
 -                         node_info=None,
 -                         relationships=relationships
 -                     )
 -                     nodes.append(node)
 - 
 -         # build index
 -         self._build_index(
 -             dataset=dataset,
 -             document=document,
 -             nodes=nodes
 -         )
 - 
 -     def indexing_estimate(self, file_detail: UploadFile, tmp_processing_rule: dict) -> dict:
 -         """
 -         Estimate the indexing for the document.
 -         """
 -         # load data from file
 -         text_docs = self._load_data_from_file(file_detail)
 - 
 -         processing_rule = DatasetProcessRule(
 -             mode=tmp_processing_rule["mode"],
 -             rules=json.dumps(tmp_processing_rule["rules"])
 -         )
 - 
 -         # get node parser for splitting
 -         node_parser = self._get_node_parser(processing_rule)
 - 
 -         # split to nodes
 -         nodes = self._split_to_nodes(
 -             text_docs=text_docs,
 -             node_parser=node_parser,
 -             processing_rule=processing_rule
 -         )
 - 
 -         tokens = 0
 -         preview_texts = []
 -         for node in nodes:
 -             if len(preview_texts) < 5:
 -                 preview_texts.append(node.get_text())
 - 
 -             tokens += TokenCalculator.get_num_tokens(self.embedding_model_name, node.get_text())
 - 
 -         return {
 -             "total_segments": len(nodes),
 -             "tokens": tokens,
 -             "total_price": '{:f}'.format(TokenCalculator.get_token_price(self.embedding_model_name, tokens)),
 -             "currency": TokenCalculator.get_currency(self.embedding_model_name),
 -             "preview": preview_texts
 -         }
 - 
 -     def _load_data(self, document: Document) -> List[Document]:
 -         # load file
 -         if document.data_source_type != "upload_file":
 -             return []
 - 
 -         data_source_info = document.data_source_info_dict
 -         if not data_source_info or 'upload_file_id' not in data_source_info:
 -             raise ValueError("no upload file found")
 - 
 -         file_detail = db.session.query(UploadFile). \
 -             filter(UploadFile.id == data_source_info['upload_file_id']). \
 -             one_or_none()
 - 
 -         text_docs = self._load_data_from_file(file_detail)
 - 
 -         # update document status to splitting
 -         self._update_document_index_status(
 -             document_id=document.id,
 -             after_indexing_status="splitting",
 -             extra_update_params={
 -                 Document.file_id: file_detail.id,
 -                 Document.word_count: sum([len(text_doc.text) for text_doc in text_docs]),
 -                 Document.parsing_completed_at: datetime.datetime.utcnow()
 -             }
 -         )
 - 
 -         # replace doc id to document model id
 -         for text_doc in text_docs:
 -             # remove invalid symbol
 -             text_doc.text = self.filter_string(text_doc.get_text())
 -             text_doc.doc_id = document.id
 - 
 -         return text_docs
 - 
 -     def filter_string(self, text):
 -         pattern = re.compile('[\x00-\x08\x0B\x0C\x0E-\x1F\x7F\x80-\xFF]')
 -         return pattern.sub('', text)
 - 
 -     def _load_data_from_file(self, upload_file: UploadFile) -> List[Document]:
 -         with tempfile.TemporaryDirectory() as temp_dir:
 -             suffix = Path(upload_file.key).suffix
 -             filepath = f"{temp_dir}/{next(tempfile._get_candidate_names())}{suffix}"
 -             self.storage.download(upload_file.key, filepath)
 - 
 -             file_extractor = DEFAULT_FILE_EXTRACTOR.copy()
 -             file_extractor[".markdown"] = MarkdownParser()
 -             file_extractor[".md"] = MarkdownParser()
 -             file_extractor[".html"] = HTMLParser()
 -             file_extractor[".htm"] = HTMLParser()
 -             file_extractor[".pdf"] = PDFParser({'upload_file': upload_file})
 - 
 -             loader = SimpleDirectoryReader(input_files=[filepath], file_extractor=file_extractor)
 -             text_docs = loader.load_data()
 - 
 -             return text_docs
 - 
 -     def _get_node_parser(self, processing_rule: DatasetProcessRule) -> NodeParser:
 -         """
 -         Get the NodeParser object according to the processing rule.
 -         """
 -         if processing_rule.mode == "custom":
 -             # The user-defined segmentation rule
 -             rules = json.loads(processing_rule.rules)
 -             segmentation = rules["segmentation"]
 -             if segmentation["max_tokens"] < 50 or segmentation["max_tokens"] > 1000:
 -                 raise ValueError("Custom segment length should be between 50 and 1000.")
 - 
 -             separator = segmentation["separator"]
 -             if separator:
 -                 separator = separator.replace('\\n', '\n')
 - 
 -             character_splitter = FixedRecursiveCharacterTextSplitter.from_tiktoken_encoder(
 -                 chunk_size=segmentation["max_tokens"],
 -                 chunk_overlap=0,
 -                 fixed_separator=separator,
 -                 separators=["\n\n", "。", ".", " ", ""]
 -             )
 -         else:
 -             # Automatic segmentation
 -             character_splitter = RecursiveCharacterTextSplitter.from_tiktoken_encoder(
 -                 chunk_size=DatasetProcessRule.AUTOMATIC_RULES['segmentation']['max_tokens'],
 -                 chunk_overlap=0,
 -                 separators=["\n\n", "。", ".", " ", ""]
 -             )
 - 
 -         return SimpleNodeParser(text_splitter=character_splitter, include_extra_info=True)
 - 
 -     def _step_split(self, text_docs: List[Document], node_parser: NodeParser,
 -                     dataset: Dataset, document: Document, processing_rule: DatasetProcessRule) -> List[Node]:
 -         """
 -         Split the text documents into nodes and save them to the document segment.
 -         """
 -         nodes = self._split_to_nodes(
 -             text_docs=text_docs,
 -             node_parser=node_parser,
 -             processing_rule=processing_rule
 -         )
 - 
 -         # save node to document segment
 -         doc_store = DatesetDocumentStore(
 -             dataset=dataset,
 -             user_id=document.created_by,
 -             embedding_model_name=self.embedding_model_name,
 -             document_id=document.id
 -         )
 - 
 -         doc_store.add_documents(nodes)
 - 
 -         # update document status to indexing
 -         cur_time = datetime.datetime.utcnow()
 -         self._update_document_index_status(
 -             document_id=document.id,
 -             after_indexing_status="indexing",
 -             extra_update_params={
 -                 Document.cleaning_completed_at: cur_time,
 -                 Document.splitting_completed_at: cur_time,
 -             }
 -         )
 - 
 -         # update segment status to indexing
 -         self._update_segments_by_document(
 -             document_id=document.id,
 -             update_params={
 -                 DocumentSegment.status: "indexing",
 -                 DocumentSegment.indexing_at: datetime.datetime.utcnow()
 -             }
 -         )
 - 
 -         return nodes
 - 
 -     def _split_to_nodes(self, text_docs: List[Document], node_parser: NodeParser,
 -                         processing_rule: DatasetProcessRule) -> List[Node]:
 -         """
 -         Split the text documents into nodes.
 -         """
 -         all_nodes = []
 -         for text_doc in text_docs:
 -             # document clean
 -             document_text = self._document_clean(text_doc.get_text(), processing_rule)
 -             text_doc.text = document_text
 - 
 -             # parse document to nodes
 -             nodes = node_parser.get_nodes_from_documents([text_doc])
 -             nodes = [node for node in nodes if node.text is not None and node.text.strip()]
 -             all_nodes.extend(nodes)
 - 
 -         return all_nodes
 - 
 -     def _document_clean(self, text: str, processing_rule: DatasetProcessRule) -> str:
 -         """
 -         Clean the document text according to the processing rules.
 -         """
 -         if processing_rule.mode == "automatic":
 -             rules = DatasetProcessRule.AUTOMATIC_RULES
 -         else:
 -             rules = json.loads(processing_rule.rules) if processing_rule.rules else {}
 - 
 -         if 'pre_processing_rules' in rules:
 -             pre_processing_rules = rules["pre_processing_rules"]
 -             for pre_processing_rule in pre_processing_rules:
 -                 if pre_processing_rule["id"] == "remove_extra_spaces" and pre_processing_rule["enabled"] is True:
 -                     # Remove extra spaces
 -                     pattern = r'\n{3,}'
 -                     text = re.sub(pattern, '\n\n', text)
 -                     pattern = r'[\t\f\r\x20\u00a0\u1680\u180e\u2000-\u200a\u202f\u205f\u3000]{2,}'
 -                     text = re.sub(pattern, ' ', text)
 -                 elif pre_processing_rule["id"] == "remove_urls_emails" and pre_processing_rule["enabled"] is True:
 -                     # Remove email
 -                     pattern = r'([a-zA-Z0-9_.+-]+@[a-zA-Z0-9-]+\.[a-zA-Z0-9-.]+)'
 -                     text = re.sub(pattern, '', text)
 - 
 -                     # Remove URL
 -                     pattern = r'https?://[^\s]+'
 -                     text = re.sub(pattern, '', text)
 - 
 -         return text
 - 
 -     def _build_index(self, dataset: Dataset, document: Document, nodes: List[Node]) -> None:
 -         """
 -         Build the index for the document.
 -         """
 -         vector_index = VectorIndex(dataset=dataset)
 -         keyword_table_index = KeywordTableIndex(dataset=dataset)
 - 
 -         # chunk nodes by chunk size
 -         indexing_start_at = time.perf_counter()
 -         tokens = 0
 -         chunk_size = 100
 -         for i in range(0, len(nodes), chunk_size):
 -             # check document is paused
 -             self._check_document_paused_status(document.id)
 -             chunk_nodes = nodes[i:i + chunk_size]
 - 
 -             tokens += sum(
 -                 TokenCalculator.get_num_tokens(self.embedding_model_name, node.get_text()) for node in chunk_nodes
 -             )
 - 
 -             # save vector index
 -             if dataset.indexing_technique == "high_quality":
 -                 vector_index.add_nodes(chunk_nodes)
 - 
 -             # save keyword index
 -             keyword_table_index.add_nodes(chunk_nodes)
 - 
 -             node_ids = [node.doc_id for node in chunk_nodes]
 -             db.session.query(DocumentSegment).filter(
 -                 DocumentSegment.document_id == document.id,
 -                 DocumentSegment.index_node_id.in_(node_ids),
 -                 DocumentSegment.status == "indexing"
 -             ).update({
 -                 DocumentSegment.status: "completed",
 -                 DocumentSegment.completed_at: datetime.datetime.utcnow()
 -             })
 - 
 -             db.session.commit()
 - 
 -         indexing_end_at = time.perf_counter()
 - 
 -         # update document status to completed
 -         self._update_document_index_status(
 -             document_id=document.id,
 -             after_indexing_status="completed",
 -             extra_update_params={
 -                 Document.tokens: tokens,
 -                 Document.completed_at: datetime.datetime.utcnow(),
 -                 Document.indexing_latency: indexing_end_at - indexing_start_at,
 -             }
 -         )
 - 
 -     def _check_document_paused_status(self, document_id: str):
 -         indexing_cache_key = 'document_{}_is_paused'.format(document_id)
 -         result = redis_client.get(indexing_cache_key)
 -         if result:
 -             raise DocumentIsPausedException()
 - 
 -     def _update_document_index_status(self, document_id: str, after_indexing_status: str,
 -                                       extra_update_params: Optional[dict] = None) -> None:
 -         """
 -         Update the document indexing status.
 -         """
 -         count = Document.query.filter_by(id=document_id, is_paused=True).count()
 -         if count > 0:
 -             raise DocumentIsPausedException()
 - 
 -         update_params = {
 -             Document.indexing_status: after_indexing_status
 -         }
 - 
 -         if extra_update_params:
 -             update_params.update(extra_update_params)
 - 
 -         Document.query.filter_by(id=document_id).update(update_params)
 -         db.session.commit()
 - 
 -     def _update_segments_by_document(self, document_id: str, update_params: dict) -> None:
 -         """
 -         Update the document segment by document id.
 -         """
 -         DocumentSegment.query.filter_by(document_id=document_id).update(update_params)
 -         db.session.commit()
 - 
 - 
 - class DocumentIsPausedException(Exception):
 -     pass
 
 
  |