You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
zhuhao 2571b0c4e3
feat: add baidu obs storage (#9024)
1 anno fa
..
.idea fix nltk averaged_perceptron_tagger download and fix score limit is none (#7582) 1 anno fa
.vscode chore: remove .idea and .vscode from root path (#7437) 1 anno fa
configs feat: add baidu obs storage (#9024) 1 anno fa
constants feat: regenerate in `Chat`, `agent` and `Chatflow` app (#7661) 1 anno fa
contexts chore(api): Introduce Ruff Formatter. (#7291) 1 anno fa
controllers refactor: remove the duplicate definitions across different modules (#9022) 1 anno fa
core fix bug when adding openai or openai-compatible stt model instance (#9006) 1 anno fa
docker fix: use LOG_LEVEL for celery startup (#7628) 1 anno fa
events chore: bump ruff to 0.6.8 for fixing violation in SIM910 (#8869) 1 anno fa
extensions feat: add baidu obs storage (#9024) 1 anno fa
fields external knowledge api (#8913) 1 anno fa
libs Update json_in_md_parser.py (#8983) 1 anno fa
migrations external knowledge api (#8913) 1 anno fa
models external knowledge api (#8913) 1 anno fa
schedule external knowledge api (#8913) 1 anno fa
services fix multiple retrieval in knowledge node (#8942) 1 anno fa
tasks external knowledge api (#8913) 1 anno fa
templates feat: implement forgot password feature (#5534) 1 anno fa
tests feat(api): add version comparison logic (#8902) 1 anno fa
.dockerignore build: support Poetry for depencencies tool in api's Dockerfile (#5105) 1 anno fa
.env.example feat: add baidu obs storage (#9024) 1 anno fa
Dockerfile fix: Version '2.6.2-2' for 'expat' was not found (#8182) 1 anno fa
README.md Enhance Readme Documentation to Clarify the Importance of Celery Service (#8558) 1 anno fa
app.py chore: remove windows platform timezone set (#8712) 1 anno fa
commands.py fix: typos and improve naming conventions: (#8687) 1 anno fa
poetry.lock feat: add baidu obs storage (#9024) 1 anno fa
poetry.toml build: initial support for poetry build tool (#4513) 1 anno fa
pyproject.toml feat: add baidu obs storage (#9024) 1 anno fa

README.md

Dify Backend API

Usage

[!IMPORTANT] In the v0.6.12 release, we deprecated pip as the package management tool for Dify API Backend service and replaced it with poetry.

  1. Start the docker-compose stack

The backend require some middleware, including PostgreSQL, Redis, and Weaviate, which can be started together using docker-compose.

   cd ../docker
   cp middleware.env.example middleware.env
   # change the profile to other vector database if you are not using weaviate
   docker compose -f docker-compose.middleware.yaml --profile weaviate -p dify up -d
   cd ../api
  1. Copy .env.example to .env
  2. Generate a SECRET_KEY in the .env file.
   sed -i "/^SECRET_KEY=/c\SECRET_KEY=$(openssl rand -base64 42)" .env
   secret_key=$(openssl rand -base64 42)
   sed -i '' "/^SECRET_KEY=/c\\
   SECRET_KEY=${secret_key}" .env
  1. Create environment.

Dify API service uses Poetry to manage dependencies. You can execute poetry shell to activate the environment.

  1. Install dependencies
   poetry env use 3.10
   poetry install

In case of contributors missing to update dependencies for pyproject.toml, you can perform the following shell instead.

   poetry shell                                               # activate current environment
   poetry add $(cat requirements.txt)           # install dependencies of production and update pyproject.toml
   poetry add $(cat requirements-dev.txt) --group dev    # install dependencies of development and update pyproject.toml
  1. Run migrate

Before the first launch, migrate the database to the latest version.

   poetry run python -m flask db upgrade
  1. Start backend
   poetry run python -m flask run --host 0.0.0.0 --port=5001 --debug
  1. Start Dify web service.
  2. Setup your application by visiting http://localhost:3000
  3. If you need to handle and debug the async tasks (e.g. dataset importing and documents indexing), please start the worker service.
   poetry run python -m celery -A app.celery worker -P gevent -c 1 --loglevel INFO -Q dataset,generation,mail,ops_trace,app_deletion

Testing

  1. Install dependencies for both the backend and the test environment
   poetry install --with dev
  1. Run the tests locally with mocked system environment variables in tool.pytest_env section in pyproject.toml
   cd ../
   poetry run -C api bash dev/pytest/pytest_all_tests.sh