You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

base_agent_runner.py 20KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528
  1. import json
  2. import logging
  3. import uuid
  4. from typing import Optional, Union, cast
  5. from sqlalchemy import select
  6. from core.agent.entities import AgentEntity, AgentToolEntity
  7. from core.app.app_config.features.file_upload.manager import FileUploadConfigManager
  8. from core.app.apps.agent_chat.app_config_manager import AgentChatAppConfig
  9. from core.app.apps.base_app_queue_manager import AppQueueManager
  10. from core.app.apps.base_app_runner import AppRunner
  11. from core.app.entities.app_invoke_entities import (
  12. AgentChatAppGenerateEntity,
  13. ModelConfigWithCredentialsEntity,
  14. )
  15. from core.callback_handler.agent_tool_callback_handler import DifyAgentCallbackHandler
  16. from core.callback_handler.index_tool_callback_handler import DatasetIndexToolCallbackHandler
  17. from core.file import file_manager
  18. from core.memory.token_buffer_memory import TokenBufferMemory
  19. from core.model_manager import ModelInstance
  20. from core.model_runtime.entities import (
  21. AssistantPromptMessage,
  22. LLMUsage,
  23. PromptMessage,
  24. PromptMessageTool,
  25. SystemPromptMessage,
  26. TextPromptMessageContent,
  27. ToolPromptMessage,
  28. UserPromptMessage,
  29. )
  30. from core.model_runtime.entities.message_entities import ImagePromptMessageContent, PromptMessageContentUnionTypes
  31. from core.model_runtime.entities.model_entities import ModelFeature
  32. from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
  33. from core.prompt.utils.extract_thread_messages import extract_thread_messages
  34. from core.tools.__base.tool import Tool
  35. from core.tools.entities.tool_entities import (
  36. ToolParameter,
  37. )
  38. from core.tools.tool_manager import ToolManager
  39. from core.tools.utils.dataset_retriever_tool import DatasetRetrieverTool
  40. from extensions.ext_database import db
  41. from factories import file_factory
  42. from models.model import Conversation, Message, MessageAgentThought, MessageFile
  43. logger = logging.getLogger(__name__)
  44. class BaseAgentRunner(AppRunner):
  45. def __init__(
  46. self,
  47. *,
  48. tenant_id: str,
  49. application_generate_entity: AgentChatAppGenerateEntity,
  50. conversation: Conversation,
  51. app_config: AgentChatAppConfig,
  52. model_config: ModelConfigWithCredentialsEntity,
  53. config: AgentEntity,
  54. queue_manager: AppQueueManager,
  55. message: Message,
  56. user_id: str,
  57. model_instance: ModelInstance,
  58. memory: Optional[TokenBufferMemory] = None,
  59. prompt_messages: Optional[list[PromptMessage]] = None,
  60. ):
  61. self.tenant_id = tenant_id
  62. self.application_generate_entity = application_generate_entity
  63. self.conversation = conversation
  64. self.app_config = app_config
  65. self.model_config = model_config
  66. self.config = config
  67. self.queue_manager = queue_manager
  68. self.message = message
  69. self.user_id = user_id
  70. self.memory = memory
  71. self.history_prompt_messages = self.organize_agent_history(prompt_messages=prompt_messages or [])
  72. self.model_instance = model_instance
  73. # init callback
  74. self.agent_callback = DifyAgentCallbackHandler()
  75. # init dataset tools
  76. hit_callback = DatasetIndexToolCallbackHandler(
  77. queue_manager=queue_manager,
  78. app_id=self.app_config.app_id,
  79. message_id=message.id,
  80. user_id=user_id,
  81. invoke_from=self.application_generate_entity.invoke_from,
  82. )
  83. self.dataset_tools = DatasetRetrieverTool.get_dataset_tools(
  84. tenant_id=tenant_id,
  85. dataset_ids=app_config.dataset.dataset_ids if app_config.dataset else [],
  86. retrieve_config=app_config.dataset.retrieve_config if app_config.dataset else None,
  87. return_resource=(
  88. app_config.additional_features.show_retrieve_source if app_config.additional_features else False
  89. ),
  90. invoke_from=application_generate_entity.invoke_from,
  91. hit_callback=hit_callback,
  92. user_id=user_id,
  93. inputs=cast(dict, application_generate_entity.inputs),
  94. )
  95. # get how many agent thoughts have been created
  96. self.agent_thought_count = (
  97. db.session.query(MessageAgentThought)
  98. .where(
  99. MessageAgentThought.message_id == self.message.id,
  100. )
  101. .count()
  102. )
  103. db.session.close()
  104. # check if model supports stream tool call
  105. llm_model = cast(LargeLanguageModel, model_instance.model_type_instance)
  106. model_schema = llm_model.get_model_schema(model_instance.model, model_instance.credentials)
  107. features = model_schema.features if model_schema and model_schema.features else []
  108. self.stream_tool_call = ModelFeature.STREAM_TOOL_CALL in features
  109. self.files = application_generate_entity.files if ModelFeature.VISION in features else []
  110. self.query: Optional[str] = ""
  111. self._current_thoughts: list[PromptMessage] = []
  112. def _repack_app_generate_entity(
  113. self, app_generate_entity: AgentChatAppGenerateEntity
  114. ) -> AgentChatAppGenerateEntity:
  115. """
  116. Repack app generate entity
  117. """
  118. if app_generate_entity.app_config.prompt_template.simple_prompt_template is None:
  119. app_generate_entity.app_config.prompt_template.simple_prompt_template = ""
  120. return app_generate_entity
  121. def _convert_tool_to_prompt_message_tool(self, tool: AgentToolEntity) -> tuple[PromptMessageTool, Tool]:
  122. """
  123. convert tool to prompt message tool
  124. """
  125. tool_entity = ToolManager.get_agent_tool_runtime(
  126. tenant_id=self.tenant_id,
  127. app_id=self.app_config.app_id,
  128. agent_tool=tool,
  129. invoke_from=self.application_generate_entity.invoke_from,
  130. )
  131. assert tool_entity.entity.description
  132. message_tool = PromptMessageTool(
  133. name=tool.tool_name,
  134. description=tool_entity.entity.description.llm,
  135. parameters={
  136. "type": "object",
  137. "properties": {},
  138. "required": [],
  139. },
  140. )
  141. parameters = tool_entity.get_merged_runtime_parameters()
  142. for parameter in parameters:
  143. if parameter.form != ToolParameter.ToolParameterForm.LLM:
  144. continue
  145. parameter_type = parameter.type.as_normal_type()
  146. if parameter.type in {
  147. ToolParameter.ToolParameterType.SYSTEM_FILES,
  148. ToolParameter.ToolParameterType.FILE,
  149. ToolParameter.ToolParameterType.FILES,
  150. }:
  151. continue
  152. enum = []
  153. if parameter.type == ToolParameter.ToolParameterType.SELECT:
  154. enum = [option.value for option in parameter.options] if parameter.options else []
  155. message_tool.parameters["properties"][parameter.name] = (
  156. {
  157. "type": parameter_type,
  158. "description": parameter.llm_description or "",
  159. }
  160. if parameter.input_schema is None
  161. else parameter.input_schema
  162. )
  163. if len(enum) > 0:
  164. message_tool.parameters["properties"][parameter.name]["enum"] = enum
  165. if parameter.required:
  166. message_tool.parameters["required"].append(parameter.name)
  167. return message_tool, tool_entity
  168. def _convert_dataset_retriever_tool_to_prompt_message_tool(self, tool: DatasetRetrieverTool) -> PromptMessageTool:
  169. """
  170. convert dataset retriever tool to prompt message tool
  171. """
  172. assert tool.entity.description
  173. prompt_tool = PromptMessageTool(
  174. name=tool.entity.identity.name,
  175. description=tool.entity.description.llm,
  176. parameters={
  177. "type": "object",
  178. "properties": {},
  179. "required": [],
  180. },
  181. )
  182. for parameter in tool.get_runtime_parameters():
  183. parameter_type = "string"
  184. prompt_tool.parameters["properties"][parameter.name] = {
  185. "type": parameter_type,
  186. "description": parameter.llm_description or "",
  187. }
  188. if parameter.required:
  189. if parameter.name not in prompt_tool.parameters["required"]:
  190. prompt_tool.parameters["required"].append(parameter.name)
  191. return prompt_tool
  192. def _init_prompt_tools(self) -> tuple[dict[str, Tool], list[PromptMessageTool]]:
  193. """
  194. Init tools
  195. """
  196. tool_instances = {}
  197. prompt_messages_tools = []
  198. for tool in self.app_config.agent.tools or [] if self.app_config.agent else []:
  199. try:
  200. prompt_tool, tool_entity = self._convert_tool_to_prompt_message_tool(tool)
  201. except Exception:
  202. # api tool may be deleted
  203. continue
  204. # save tool entity
  205. tool_instances[tool.tool_name] = tool_entity
  206. # save prompt tool
  207. prompt_messages_tools.append(prompt_tool)
  208. # convert dataset tools into ModelRuntime Tool format
  209. for dataset_tool in self.dataset_tools:
  210. prompt_tool = self._convert_dataset_retriever_tool_to_prompt_message_tool(dataset_tool)
  211. # save prompt tool
  212. prompt_messages_tools.append(prompt_tool)
  213. # save tool entity
  214. tool_instances[dataset_tool.entity.identity.name] = dataset_tool
  215. return tool_instances, prompt_messages_tools
  216. def update_prompt_message_tool(self, tool: Tool, prompt_tool: PromptMessageTool) -> PromptMessageTool:
  217. """
  218. update prompt message tool
  219. """
  220. # try to get tool runtime parameters
  221. tool_runtime_parameters = tool.get_runtime_parameters()
  222. for parameter in tool_runtime_parameters:
  223. if parameter.form != ToolParameter.ToolParameterForm.LLM:
  224. continue
  225. parameter_type = parameter.type.as_normal_type()
  226. if parameter.type in {
  227. ToolParameter.ToolParameterType.SYSTEM_FILES,
  228. ToolParameter.ToolParameterType.FILE,
  229. ToolParameter.ToolParameterType.FILES,
  230. }:
  231. continue
  232. enum = []
  233. if parameter.type == ToolParameter.ToolParameterType.SELECT:
  234. enum = [option.value for option in parameter.options] if parameter.options else []
  235. prompt_tool.parameters["properties"][parameter.name] = (
  236. {
  237. "type": parameter_type,
  238. "description": parameter.llm_description or "",
  239. }
  240. if parameter.input_schema is None
  241. else parameter.input_schema
  242. )
  243. if len(enum) > 0:
  244. prompt_tool.parameters["properties"][parameter.name]["enum"] = enum
  245. if parameter.required:
  246. if parameter.name not in prompt_tool.parameters["required"]:
  247. prompt_tool.parameters["required"].append(parameter.name)
  248. return prompt_tool
  249. def create_agent_thought(
  250. self, message_id: str, message: str, tool_name: str, tool_input: str, messages_ids: list[str]
  251. ) -> str:
  252. """
  253. Create agent thought
  254. """
  255. thought = MessageAgentThought(
  256. message_id=message_id,
  257. message_chain_id=None,
  258. thought="",
  259. tool=tool_name,
  260. tool_labels_str="{}",
  261. tool_meta_str="{}",
  262. tool_input=tool_input,
  263. message=message,
  264. message_token=0,
  265. message_unit_price=0,
  266. message_price_unit=0,
  267. message_files=json.dumps(messages_ids) if messages_ids else "",
  268. answer="",
  269. observation="",
  270. answer_token=0,
  271. answer_unit_price=0,
  272. answer_price_unit=0,
  273. tokens=0,
  274. total_price=0,
  275. position=self.agent_thought_count + 1,
  276. currency="USD",
  277. latency=0,
  278. created_by_role="account",
  279. created_by=self.user_id,
  280. )
  281. db.session.add(thought)
  282. db.session.commit()
  283. agent_thought_id = str(thought.id)
  284. self.agent_thought_count += 1
  285. db.session.close()
  286. return agent_thought_id
  287. def save_agent_thought(
  288. self,
  289. agent_thought_id: str,
  290. tool_name: str | None,
  291. tool_input: Union[str, dict, None],
  292. thought: str | None,
  293. observation: Union[str, dict, None],
  294. tool_invoke_meta: Union[str, dict, None],
  295. answer: str | None,
  296. messages_ids: list[str],
  297. llm_usage: LLMUsage | None = None,
  298. ):
  299. """
  300. Save agent thought
  301. """
  302. stmt = select(MessageAgentThought).where(MessageAgentThought.id == agent_thought_id)
  303. agent_thought = db.session.scalar(stmt)
  304. if not agent_thought:
  305. raise ValueError("agent thought not found")
  306. if thought:
  307. agent_thought.thought += thought
  308. if tool_name:
  309. agent_thought.tool = tool_name
  310. if tool_input:
  311. if isinstance(tool_input, dict):
  312. try:
  313. tool_input = json.dumps(tool_input, ensure_ascii=False)
  314. except Exception:
  315. tool_input = json.dumps(tool_input)
  316. agent_thought.tool_input = tool_input
  317. if observation:
  318. if isinstance(observation, dict):
  319. try:
  320. observation = json.dumps(observation, ensure_ascii=False)
  321. except Exception:
  322. observation = json.dumps(observation)
  323. agent_thought.observation = observation
  324. if answer:
  325. agent_thought.answer = answer
  326. if messages_ids is not None and len(messages_ids) > 0:
  327. agent_thought.message_files = json.dumps(messages_ids)
  328. if llm_usage:
  329. agent_thought.message_token = llm_usage.prompt_tokens
  330. agent_thought.message_price_unit = llm_usage.prompt_price_unit
  331. agent_thought.message_unit_price = llm_usage.prompt_unit_price
  332. agent_thought.answer_token = llm_usage.completion_tokens
  333. agent_thought.answer_price_unit = llm_usage.completion_price_unit
  334. agent_thought.answer_unit_price = llm_usage.completion_unit_price
  335. agent_thought.tokens = llm_usage.total_tokens
  336. agent_thought.total_price = llm_usage.total_price
  337. # check if tool labels is not empty
  338. labels = agent_thought.tool_labels or {}
  339. tools = agent_thought.tool.split(";") if agent_thought.tool else []
  340. for tool in tools:
  341. if not tool:
  342. continue
  343. if tool not in labels:
  344. tool_label = ToolManager.get_tool_label(tool)
  345. if tool_label:
  346. labels[tool] = tool_label.to_dict()
  347. else:
  348. labels[tool] = {"en_US": tool, "zh_Hans": tool}
  349. agent_thought.tool_labels_str = json.dumps(labels)
  350. if tool_invoke_meta is not None:
  351. if isinstance(tool_invoke_meta, dict):
  352. try:
  353. tool_invoke_meta = json.dumps(tool_invoke_meta, ensure_ascii=False)
  354. except Exception:
  355. tool_invoke_meta = json.dumps(tool_invoke_meta)
  356. agent_thought.tool_meta_str = tool_invoke_meta
  357. db.session.commit()
  358. db.session.close()
  359. def organize_agent_history(self, prompt_messages: list[PromptMessage]) -> list[PromptMessage]:
  360. """
  361. Organize agent history
  362. """
  363. result: list[PromptMessage] = []
  364. # check if there is a system message in the beginning of the conversation
  365. for prompt_message in prompt_messages:
  366. if isinstance(prompt_message, SystemPromptMessage):
  367. result.append(prompt_message)
  368. messages = (
  369. (
  370. db.session.execute(
  371. select(Message)
  372. .where(Message.conversation_id == self.message.conversation_id)
  373. .order_by(Message.created_at.desc())
  374. )
  375. )
  376. .scalars()
  377. .all()
  378. )
  379. messages = list(reversed(extract_thread_messages(messages)))
  380. for message in messages:
  381. if message.id == self.message.id:
  382. continue
  383. result.append(self.organize_agent_user_prompt(message))
  384. agent_thoughts: list[MessageAgentThought] = message.agent_thoughts
  385. if agent_thoughts:
  386. for agent_thought in agent_thoughts:
  387. tools = agent_thought.tool
  388. if tools:
  389. tools = tools.split(";")
  390. tool_calls: list[AssistantPromptMessage.ToolCall] = []
  391. tool_call_response: list[ToolPromptMessage] = []
  392. try:
  393. tool_inputs = json.loads(agent_thought.tool_input)
  394. except Exception:
  395. tool_inputs = {tool: {} for tool in tools}
  396. try:
  397. tool_responses = json.loads(agent_thought.observation)
  398. except Exception:
  399. tool_responses = dict.fromkeys(tools, agent_thought.observation)
  400. for tool in tools:
  401. # generate a uuid for tool call
  402. tool_call_id = str(uuid.uuid4())
  403. tool_calls.append(
  404. AssistantPromptMessage.ToolCall(
  405. id=tool_call_id,
  406. type="function",
  407. function=AssistantPromptMessage.ToolCall.ToolCallFunction(
  408. name=tool,
  409. arguments=json.dumps(tool_inputs.get(tool, {})),
  410. ),
  411. )
  412. )
  413. tool_call_response.append(
  414. ToolPromptMessage(
  415. content=tool_responses.get(tool, agent_thought.observation),
  416. name=tool,
  417. tool_call_id=tool_call_id,
  418. )
  419. )
  420. result.extend(
  421. [
  422. AssistantPromptMessage(
  423. content=agent_thought.thought,
  424. tool_calls=tool_calls,
  425. ),
  426. *tool_call_response,
  427. ]
  428. )
  429. if not tools:
  430. result.append(AssistantPromptMessage(content=agent_thought.thought))
  431. else:
  432. if message.answer:
  433. result.append(AssistantPromptMessage(content=message.answer))
  434. db.session.close()
  435. return result
  436. def organize_agent_user_prompt(self, message: Message) -> UserPromptMessage:
  437. stmt = select(MessageFile).where(MessageFile.message_id == message.id)
  438. files = db.session.scalars(stmt).all()
  439. if not files:
  440. return UserPromptMessage(content=message.query)
  441. if message.app_model_config:
  442. file_extra_config = FileUploadConfigManager.convert(message.app_model_config.to_dict())
  443. else:
  444. file_extra_config = None
  445. if not file_extra_config:
  446. return UserPromptMessage(content=message.query)
  447. image_detail_config = file_extra_config.image_config.detail if file_extra_config.image_config else None
  448. image_detail_config = image_detail_config or ImagePromptMessageContent.DETAIL.LOW
  449. file_objs = file_factory.build_from_message_files(
  450. message_files=files, tenant_id=self.tenant_id, config=file_extra_config
  451. )
  452. if not file_objs:
  453. return UserPromptMessage(content=message.query)
  454. prompt_message_contents: list[PromptMessageContentUnionTypes] = []
  455. for file in file_objs:
  456. prompt_message_contents.append(
  457. file_manager.to_prompt_message_content(
  458. file,
  459. image_detail_config=image_detail_config,
  460. )
  461. )
  462. prompt_message_contents.append(TextPromptMessageContent(data=message.query))
  463. return UserPromptMessage(content=prompt_message_contents)