You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Jyong 1473083a41
catch openai rate limit error (#7658)
1 yıl önce
..
.idea fix nltk averaged_perceptron_tagger download and fix score limit is none (#7582) 1 yıl önce
.vscode chore: remove .idea and .vscode from root path (#7437) 1 yıl önce
configs chore(api/configs): apply ruff reformat (#7590) 1 yıl önce
constants chore(api): Introduce Ruff Formatter. (#7291) 1 yıl önce
contexts chore(api): Introduce Ruff Formatter. (#7291) 1 yıl önce
controllers catch openai rate limit error (#7658) 1 yıl önce
core catch openai rate limit error (#7658) 1 yıl önce
docker fix: use LOG_LEVEL for celery startup (#7628) 1 yıl önce
events feat: custom app icon (#7196) 1 yıl önce
extensions fix(storage): 🐛 Create S3 bucket if it doesn't exist (#7514) 1 yıl önce
fields feat: Sort conversations by updated_at desc (#7348) 1 yıl önce
libs feat: custom app icon (#7196) 1 yıl önce
migrations chore(database): Rename table name from `workflow__conversation_variables` to `workflow_conversation_variables`. (#7432) 1 yıl önce
models Feat/7134 use dataset api create a dataset with permission (#7508) 1 yıl önce
schedule chore(api): Introduce Ruff Formatter. (#7291) 1 yıl önce
services catch openai rate limit error (#7658) 1 yıl önce
tasks chore(api/tasks): apply ruff reformatting (#7594) 1 yıl önce
templates feat: implement forgot password feature (#5534) 1 yıl önce
tests chore(api/tests): apply ruff reformat #7590 (#7591) 1 yıl önce
.dockerignore build: support Poetry for depencencies tool in api's Dockerfile (#5105) 1 yıl önce
.env.example Feat/7134 use dataset api create a dataset with permission (#7508) 1 yıl önce
Dockerfile fix nltk averaged_perceptron_tagger download and fix score limit is none (#7582) 1 yıl önce
README.md Chores: add missing profile for middleware docker compose cmd and fix ssrf-proxy doc link (#6372) 1 yıl önce
app.py chore(api): Introduce Ruff Formatter. (#7291) 1 yıl önce
commands.py chore(api): Introduce Ruff Formatter. (#7291) 1 yıl önce
poetry.lock feat: Introduce Ark SDK v3 and ensure compatibility with models of SDK v2 (#7579) 1 yıl önce
poetry.toml build: initial support for poetry build tool (#4513) 1 yıl önce
pyproject.toml chore(api/controllers): Apply Ruff Formatter. (#7645) 1 yıl önce

README.md

Dify Backend API

Usage

[!IMPORTANT] In the v0.6.12 release, we deprecated pip as the package management tool for Dify API Backend service and replaced it with poetry.

  1. Start the docker-compose stack

The backend require some middleware, including PostgreSQL, Redis, and Weaviate, which can be started together using docker-compose.

   cd ../docker
   cp middleware.env.example middleware.env
   # change the profile to other vector database if you are not using weaviate
   docker compose -f docker-compose.middleware.yaml --profile weaviate -p dify up -d
   cd ../api
  1. Copy .env.example to .env
  2. Generate a SECRET_KEY in the .env file.
   sed -i "/^SECRET_KEY=/c\SECRET_KEY=$(openssl rand -base64 42)" .env
   secret_key=$(openssl rand -base64 42)
   sed -i '' "/^SECRET_KEY=/c\\
   SECRET_KEY=${secret_key}" .env
  1. Create environment.

Dify API service uses Poetry to manage dependencies. You can execute poetry shell to activate the environment.

  1. Install dependencies
   poetry env use 3.10
   poetry install

In case of contributors missing to update dependencies for pyproject.toml, you can perform the following shell instead.

   poetry shell                                               # activate current environment
   poetry add $(cat requirements.txt)           # install dependencies of production and update pyproject.toml
   poetry add $(cat requirements-dev.txt) --group dev    # install dependencies of development and update pyproject.toml
  1. Run migrate

Before the first launch, migrate the database to the latest version.

   poetry run python -m flask db upgrade
  1. Start backend
   poetry run python -m flask run --host 0.0.0.0 --port=5001 --debug
  1. Start Dify web service.
  2. Setup your application by visiting http://localhost:3000
  3. If you need to debug local async processing, please start the worker service.
   poetry run python -m celery -A app.celery worker -P gevent -c 1 --loglevel INFO -Q dataset,generation,mail,ops_trace,app_deletion

The started celery app handles the async tasks, e.g. dataset importing and documents indexing.

Testing

  1. Install dependencies for both the backend and the test environment
   poetry install --with dev
  1. Run the tests locally with mocked system environment variables in tool.pytest_env section in pyproject.toml
   cd ../
   poetry run -C api bash dev/pytest/pytest_all_tests.sh