Vous ne pouvez pas sélectionner plus de 25 sujets Les noms de sujets doivent commencer par une lettre ou un nombre, peuvent contenir des tirets ('-') et peuvent comporter jusqu'à 35 caractères.

duplicate_document_indexing_task.py 4.2KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106
  1. import logging
  2. import time
  3. import click
  4. from celery import shared_task
  5. from configs import dify_config
  6. from core.indexing_runner import DocumentIsPausedError, IndexingRunner
  7. from core.rag.index_processor.index_processor_factory import IndexProcessorFactory
  8. from extensions.ext_database import db
  9. from libs.datetime_utils import naive_utc_now
  10. from models.dataset import Dataset, Document, DocumentSegment
  11. from services.feature_service import FeatureService
  12. logger = logging.getLogger(__name__)
  13. @shared_task(queue="dataset")
  14. def duplicate_document_indexing_task(dataset_id: str, document_ids: list):
  15. """
  16. Async process document
  17. :param dataset_id:
  18. :param document_ids:
  19. Usage: duplicate_document_indexing_task.delay(dataset_id, document_ids)
  20. """
  21. documents = []
  22. start_at = time.perf_counter()
  23. try:
  24. dataset = db.session.query(Dataset).where(Dataset.id == dataset_id).first()
  25. if dataset is None:
  26. logger.info(click.style(f"Dataset not found: {dataset_id}", fg="red"))
  27. db.session.close()
  28. return
  29. # check document limit
  30. features = FeatureService.get_features(dataset.tenant_id)
  31. try:
  32. if features.billing.enabled:
  33. vector_space = features.vector_space
  34. count = len(document_ids)
  35. if features.billing.subscription.plan == "sandbox" and count > 1:
  36. raise ValueError("Your current plan does not support batch upload, please upgrade your plan.")
  37. batch_upload_limit = int(dify_config.BATCH_UPLOAD_LIMIT)
  38. if count > batch_upload_limit:
  39. raise ValueError(f"You have reached the batch upload limit of {batch_upload_limit}.")
  40. if 0 < vector_space.limit <= vector_space.size:
  41. raise ValueError(
  42. "Your total number of documents plus the number of uploads have over the limit of "
  43. "your subscription."
  44. )
  45. except Exception as e:
  46. for document_id in document_ids:
  47. document = (
  48. db.session.query(Document)
  49. .where(Document.id == document_id, Document.dataset_id == dataset_id)
  50. .first()
  51. )
  52. if document:
  53. document.indexing_status = "error"
  54. document.error = str(e)
  55. document.stopped_at = naive_utc_now()
  56. db.session.add(document)
  57. db.session.commit()
  58. return
  59. for document_id in document_ids:
  60. logger.info(click.style(f"Start process document: {document_id}", fg="green"))
  61. document = (
  62. db.session.query(Document).where(Document.id == document_id, Document.dataset_id == dataset_id).first()
  63. )
  64. if document:
  65. # clean old data
  66. index_type = document.doc_form
  67. index_processor = IndexProcessorFactory(index_type).init_index_processor()
  68. segments = db.session.query(DocumentSegment).where(DocumentSegment.document_id == document_id).all()
  69. if segments:
  70. index_node_ids = [segment.index_node_id for segment in segments]
  71. # delete from vector index
  72. index_processor.clean(dataset, index_node_ids, with_keywords=True, delete_child_chunks=True)
  73. for segment in segments:
  74. db.session.delete(segment)
  75. db.session.commit()
  76. document.indexing_status = "parsing"
  77. document.processing_started_at = naive_utc_now()
  78. documents.append(document)
  79. db.session.add(document)
  80. db.session.commit()
  81. indexing_runner = IndexingRunner()
  82. indexing_runner.run(documents)
  83. end_at = time.perf_counter()
  84. logger.info(click.style(f"Processed dataset: {dataset_id} latency: {end_at - start_at}", fg="green"))
  85. except DocumentIsPausedError as ex:
  86. logger.info(click.style(str(ex), fg="yellow"))
  87. except Exception:
  88. logger.exception("duplicate_document_indexing_task failed, dataset_id: %s", dataset_id)
  89. finally:
  90. db.session.close()