| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105 | 
							- import logging
 - import time
 - 
 - import click
 - from celery import shared_task
 - 
 - from core.rag.index_processor.index_processor_factory import IndexProcessorFactory
 - from core.rag.models.document import Document
 - from extensions.ext_database import db
 - from models.dataset import Dataset, DocumentSegment
 - from models.dataset import Document as DatasetDocument
 - 
 - 
 - @shared_task(queue='dataset')
 - def deal_dataset_vector_index_task(dataset_id: str, action: str):
 -     """
 -     Async deal dataset from index
 -     :param dataset_id: dataset_id
 -     :param action: action
 -     Usage: deal_dataset_vector_index_task.delay(dataset_id, action)
 -     """
 -     logging.info(click.style('Start deal dataset vector index: {}'.format(dataset_id), fg='green'))
 -     start_at = time.perf_counter()
 - 
 -     try:
 -         dataset = Dataset.query.filter_by(
 -             id=dataset_id
 -         ).first()
 - 
 -         if not dataset:
 -             raise Exception('Dataset not found')
 -         index_type = dataset.doc_form
 -         index_processor = IndexProcessorFactory(index_type).init_index_processor()
 -         if action == "remove":
 -             index_processor.clean(dataset, None, with_keywords=False)
 -         elif action == "add":
 -             dataset_documents = db.session.query(DatasetDocument).filter(
 -                 DatasetDocument.dataset_id == dataset_id,
 -                 DatasetDocument.indexing_status == 'completed',
 -                 DatasetDocument.enabled == True,
 -                 DatasetDocument.archived == False,
 -             ).all()
 - 
 -             if dataset_documents:
 -                 documents = []
 -                 for dataset_document in dataset_documents:
 -                     # delete from vector index
 -                     segments = db.session.query(DocumentSegment).filter(
 -                         DocumentSegment.document_id == dataset_document.id,
 -                         DocumentSegment.enabled == True
 -                     ) .order_by(DocumentSegment.position.asc()).all()
 -                     for segment in segments:
 -                         document = Document(
 -                             page_content=segment.content,
 -                             metadata={
 -                                 "doc_id": segment.index_node_id,
 -                                 "doc_hash": segment.index_node_hash,
 -                                 "document_id": segment.document_id,
 -                                 "dataset_id": segment.dataset_id,
 -                             }
 -                         )
 - 
 -                         documents.append(document)
 - 
 -                 # save vector index
 -                 index_processor.load(dataset, documents, with_keywords=False)
 -         elif action == 'update':
 -             # clean index
 -             index_processor.clean(dataset, None, with_keywords=False)
 -             dataset_documents = db.session.query(DatasetDocument).filter(
 -                 DatasetDocument.dataset_id == dataset_id,
 -                 DatasetDocument.indexing_status == 'completed',
 -                 DatasetDocument.enabled == True,
 -                 DatasetDocument.archived == False,
 -             ).all()
 -             # add new index
 -             if dataset_documents:
 -                 documents = []
 -                 for dataset_document in dataset_documents:
 -                     # delete from vector index
 -                     segments = db.session.query(DocumentSegment).filter(
 -                         DocumentSegment.document_id == dataset_document.id,
 -                         DocumentSegment.enabled == True
 -                     ).order_by(DocumentSegment.position.asc()).all()
 -                     for segment in segments:
 -                         document = Document(
 -                             page_content=segment.content,
 -                             metadata={
 -                                 "doc_id": segment.index_node_id,
 -                                 "doc_hash": segment.index_node_hash,
 -                                 "document_id": segment.document_id,
 -                                 "dataset_id": segment.dataset_id,
 -                             }
 -                         )
 - 
 -                         documents.append(document)
 - 
 -                 # save vector index
 -                 index_processor.load(dataset, documents, with_keywords=False)
 - 
 -         end_at = time.perf_counter()
 -         logging.info(
 -             click.style('Deal dataset vector index: {} latency: {}'.format(dataset_id, end_at - start_at), fg='green'))
 -     except Exception:
 -         logging.exception("Deal dataset vector index failed")
 
 
  |