Vous ne pouvez pas sélectionner plus de 25 sujets Les noms de sujets doivent commencer par une lettre ou un nombre, peuvent contenir des tirets ('-') et peuvent comporter jusqu'à 35 caractères.

vector_service.py 9.6KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227
  1. import logging
  2. from typing import Optional
  3. from core.model_manager import ModelInstance, ModelManager
  4. from core.model_runtime.entities.model_entities import ModelType
  5. from core.rag.datasource.keyword.keyword_factory import Keyword
  6. from core.rag.datasource.vdb.vector_factory import Vector
  7. from core.rag.index_processor.constant.index_type import IndexType
  8. from core.rag.index_processor.index_processor_factory import IndexProcessorFactory
  9. from core.rag.models.document import Document
  10. from extensions.ext_database import db
  11. from models.dataset import ChildChunk, Dataset, DatasetProcessRule, DocumentSegment
  12. from models.dataset import Document as DatasetDocument
  13. from services.entities.knowledge_entities.knowledge_entities import ParentMode
  14. _logger = logging.getLogger(__name__)
  15. class VectorService:
  16. @classmethod
  17. def create_segments_vector(
  18. cls, keywords_list: Optional[list[list[str]]], segments: list[DocumentSegment], dataset: Dataset, doc_form: str
  19. ):
  20. documents = []
  21. for segment in segments:
  22. if doc_form == IndexType.PARENT_CHILD_INDEX:
  23. document = db.session.query(DatasetDocument).filter_by(id=segment.document_id).first()
  24. if not document:
  25. _logger.warning(
  26. "Expected DatasetDocument record to exist, but none was found, document_id=%s, segment_id=%s",
  27. segment.document_id,
  28. segment.id,
  29. )
  30. continue
  31. # get the process rule
  32. processing_rule = (
  33. db.session.query(DatasetProcessRule)
  34. .filter(DatasetProcessRule.id == document.dataset_process_rule_id)
  35. .first()
  36. )
  37. if not processing_rule:
  38. raise ValueError("No processing rule found.")
  39. # get embedding model instance
  40. if dataset.indexing_technique == "high_quality":
  41. # check embedding model setting
  42. model_manager = ModelManager()
  43. if dataset.embedding_model_provider:
  44. embedding_model_instance = model_manager.get_model_instance(
  45. tenant_id=dataset.tenant_id,
  46. provider=dataset.embedding_model_provider,
  47. model_type=ModelType.TEXT_EMBEDDING,
  48. model=dataset.embedding_model,
  49. )
  50. else:
  51. embedding_model_instance = model_manager.get_default_model_instance(
  52. tenant_id=dataset.tenant_id,
  53. model_type=ModelType.TEXT_EMBEDDING,
  54. )
  55. else:
  56. raise ValueError("The knowledge base index technique is not high quality!")
  57. cls.generate_child_chunks(segment, document, dataset, embedding_model_instance, processing_rule, False)
  58. else:
  59. document = Document( # type: ignore
  60. page_content=segment.content,
  61. metadata={
  62. "doc_id": segment.index_node_id,
  63. "doc_hash": segment.index_node_hash,
  64. "document_id": segment.document_id,
  65. "dataset_id": segment.dataset_id,
  66. },
  67. )
  68. documents.append(document)
  69. if len(documents) > 0:
  70. index_processor = IndexProcessorFactory(doc_form).init_index_processor()
  71. index_processor.load(dataset, documents, with_keywords=True, keywords_list=keywords_list) # type: ignore
  72. @classmethod
  73. def update_segment_vector(cls, keywords: Optional[list[str]], segment: DocumentSegment, dataset: Dataset):
  74. # update segment index task
  75. # format new index
  76. document = Document(
  77. page_content=segment.content,
  78. metadata={
  79. "doc_id": segment.index_node_id,
  80. "doc_hash": segment.index_node_hash,
  81. "document_id": segment.document_id,
  82. "dataset_id": segment.dataset_id,
  83. },
  84. )
  85. if dataset.indexing_technique == "high_quality":
  86. # update vector index
  87. vector = Vector(dataset=dataset)
  88. vector.delete_by_ids([segment.index_node_id])
  89. vector.add_texts([document], duplicate_check=True)
  90. # update keyword index
  91. keyword = Keyword(dataset)
  92. keyword.delete_by_ids([segment.index_node_id])
  93. # save keyword index
  94. if keywords and len(keywords) > 0:
  95. keyword.add_texts([document], keywords_list=[keywords])
  96. else:
  97. keyword.add_texts([document])
  98. @classmethod
  99. def generate_child_chunks(
  100. cls,
  101. segment: DocumentSegment,
  102. dataset_document: DatasetDocument,
  103. dataset: Dataset,
  104. embedding_model_instance: ModelInstance,
  105. processing_rule: DatasetProcessRule,
  106. regenerate: bool = False,
  107. ):
  108. index_processor = IndexProcessorFactory(dataset.doc_form).init_index_processor()
  109. if regenerate:
  110. # delete child chunks
  111. index_processor.clean(dataset, [segment.index_node_id], with_keywords=True, delete_child_chunks=True)
  112. # generate child chunks
  113. document = Document(
  114. page_content=segment.content,
  115. metadata={
  116. "doc_id": segment.index_node_id,
  117. "doc_hash": segment.index_node_hash,
  118. "document_id": segment.document_id,
  119. "dataset_id": segment.dataset_id,
  120. },
  121. )
  122. # use full doc mode to generate segment's child chunk
  123. processing_rule_dict = processing_rule.to_dict()
  124. processing_rule_dict["rules"]["parent_mode"] = ParentMode.FULL_DOC.value
  125. documents = index_processor.transform(
  126. [document],
  127. embedding_model_instance=embedding_model_instance,
  128. process_rule=processing_rule_dict,
  129. tenant_id=dataset.tenant_id,
  130. doc_language=dataset_document.doc_language,
  131. )
  132. # save child chunks
  133. if documents and documents[0].children:
  134. index_processor.load(dataset, documents)
  135. for position, child_chunk in enumerate(documents[0].children, start=1):
  136. child_segment = ChildChunk(
  137. tenant_id=dataset.tenant_id,
  138. dataset_id=dataset.id,
  139. document_id=dataset_document.id,
  140. segment_id=segment.id,
  141. position=position,
  142. index_node_id=child_chunk.metadata["doc_id"],
  143. index_node_hash=child_chunk.metadata["doc_hash"],
  144. content=child_chunk.page_content,
  145. word_count=len(child_chunk.page_content),
  146. type="automatic",
  147. created_by=dataset_document.created_by,
  148. )
  149. db.session.add(child_segment)
  150. db.session.commit()
  151. @classmethod
  152. def create_child_chunk_vector(cls, child_segment: ChildChunk, dataset: Dataset):
  153. child_document = Document(
  154. page_content=child_segment.content,
  155. metadata={
  156. "doc_id": child_segment.index_node_id,
  157. "doc_hash": child_segment.index_node_hash,
  158. "document_id": child_segment.document_id,
  159. "dataset_id": child_segment.dataset_id,
  160. },
  161. )
  162. if dataset.indexing_technique == "high_quality":
  163. # save vector index
  164. vector = Vector(dataset=dataset)
  165. vector.add_texts([child_document], duplicate_check=True)
  166. @classmethod
  167. def update_child_chunk_vector(
  168. cls,
  169. new_child_chunks: list[ChildChunk],
  170. update_child_chunks: list[ChildChunk],
  171. delete_child_chunks: list[ChildChunk],
  172. dataset: Dataset,
  173. ):
  174. documents = []
  175. delete_node_ids = []
  176. for new_child_chunk in new_child_chunks:
  177. new_child_document = Document(
  178. page_content=new_child_chunk.content,
  179. metadata={
  180. "doc_id": new_child_chunk.index_node_id,
  181. "doc_hash": new_child_chunk.index_node_hash,
  182. "document_id": new_child_chunk.document_id,
  183. "dataset_id": new_child_chunk.dataset_id,
  184. },
  185. )
  186. documents.append(new_child_document)
  187. for update_child_chunk in update_child_chunks:
  188. child_document = Document(
  189. page_content=update_child_chunk.content,
  190. metadata={
  191. "doc_id": update_child_chunk.index_node_id,
  192. "doc_hash": update_child_chunk.index_node_hash,
  193. "document_id": update_child_chunk.document_id,
  194. "dataset_id": update_child_chunk.dataset_id,
  195. },
  196. )
  197. documents.append(child_document)
  198. delete_node_ids.append(update_child_chunk.index_node_id)
  199. for delete_child_chunk in delete_child_chunks:
  200. delete_node_ids.append(delete_child_chunk.index_node_id)
  201. if dataset.indexing_technique == "high_quality":
  202. # update vector index
  203. vector = Vector(dataset=dataset)
  204. if delete_node_ids:
  205. vector.delete_by_ids(delete_node_ids)
  206. if documents:
  207. vector.add_texts(documents, duplicate_check=True)
  208. @classmethod
  209. def delete_child_chunk_vector(cls, child_chunk: ChildChunk, dataset: Dataset):
  210. vector = Vector(dataset=dataset)
  211. vector.delete_by_ids([child_chunk.index_node_id])