Nevar pievienot vairāk kā 25 tēmas Tēmai ir jāsākas ar burtu vai ciparu, tā var saturēt domu zīmes ('-') un var būt līdz 35 simboliem gara.
tmuife 06fc1bce9e
Add search by full text when using Oracle23ai as vector DB (#6559)
pirms 1 gada
..
configs Feat/environment variables in workflow (#6515) pirms 1 gada
constants Feat/environment variables in workflow (#6515) pirms 1 gada
contexts Feat/environment variables in workflow (#6515) pirms 1 gada
controllers Add search by full text when using Oracle23ai as vector DB (#6559) pirms 1 gada
core Add search by full text when using Oracle23ai as vector DB (#6559) pirms 1 gada
docker fix: kill signal is not passed to the main process (#6159) pirms 1 gada
events Feat/delete file when clean document (#5882) pirms 1 gada
extensions update celery beat scheduler time to env (#6352) pirms 1 gada
fields Feat/environment variables in workflow (#6515) pirms 1 gada
libs fix(api/services/app_generate_service.py): Remove wrong type hints. (#6535) pirms 1 gada
migrations Feat/environment variables in workflow (#6515) pirms 1 gada
models Feat/environment variables in workflow (#6515) pirms 1 gada
schedule Feat/environment variables in workflow (#6515) pirms 1 gada
services fix: escape double quotation marks in the vector DB search query (#6506) pirms 1 gada
tasks update empty document caused delete exist collection (#6392) pirms 1 gada
templates feat: implement forgot password feature (#5534) pirms 1 gada
tests Feat/environment variables in workflow (#6515) pirms 1 gada
.dockerignore build: support Poetry for depencencies tool in api's Dockerfile (#5105) pirms 1 gada
.env.example update celery beat scheduler time to env (#6352) pirms 1 gada
Dockerfile chore: skip pip upgrade preparation in api dockerfile (#5999) pirms 1 gada
README.md typo: Update README.md (#5987) pirms 1 gada
app.py Feat/environment variables in workflow (#6515) pirms 1 gada
commands.py feat: support AnalyticDB vector store (#5586) pirms 1 gada
poetry.lock chore(deps): bump sentry-sdk from 1.39.2 to 2.8.0 in /api (#6517) pirms 1 gada
poetry.toml build: initial support for poetry build tool (#4513) pirms 1 gada
pyproject.toml chore(deps): bump sentry-sdk from 1.39.2 to 2.8.0 in /api (#6517) pirms 1 gada

README.md

Dify Backend API

Usage

[!IMPORTANT] In the v0.6.12 release, we deprecated pip as the package management tool for Dify API Backend service and replaced it with poetry.

  1. Start the docker-compose stack

The backend require some middleware, including PostgreSQL, Redis, and Weaviate, which can be started together using docker-compose.

   cd ../docker
   cp middleware.env.example middleware.env
   docker compose -f docker-compose.middleware.yaml -p dify up -d
   cd ../api
  1. Copy .env.example to .env
  2. Generate a SECRET_KEY in the .env file.
   sed -i "/^SECRET_KEY=/c\SECRET_KEY=$(openssl rand -base64 42)" .env
   secret_key=$(openssl rand -base64 42)
   sed -i '' "/^SECRET_KEY=/c\\
   SECRET_KEY=${secret_key}" .env
  1. Create environment.

Dify API service uses Poetry to manage dependencies. You can execute poetry shell to activate the environment.

  1. Install dependencies
   poetry env use 3.10
   poetry install

In case of contributors missing to update dependencies for pyproject.toml, you can perform the following shell instead.

   poetry shell                                               # activate current environment
   poetry add $(cat requirements.txt)           # install dependencies of production and update pyproject.toml
   poetry add $(cat requirements-dev.txt) --group dev    # install dependencies of development and update pyproject.toml
  1. Run migrate

Before the first launch, migrate the database to the latest version.

   poetry run python -m flask db upgrade
  1. Start backend
   poetry run python -m flask run --host 0.0.0.0 --port=5001 --debug
  1. Start Dify web service.
  2. Setup your application by visiting http://localhost:3000
  3. If you need to debug local async processing, please start the worker service.
   poetry run python -m celery -A app.celery worker -P gevent -c 1 --loglevel INFO -Q dataset,generation,mail,ops_trace,app_deletion

The started celery app handles the async tasks, e.g. dataset importing and documents indexing.

Testing

  1. Install dependencies for both the backend and the test environment
   poetry install --with dev
  1. Run the tests locally with mocked system environment variables in tool.pytest_env section in pyproject.toml
   cd ../
   poetry run -C api bash dev/pytest/pytest_all_tests.sh