Nevar pievienot vairāk kā 25 tēmas Tēmai ir jāsākas ar burtu vai ciparu, tā var saturēt domu zīmes ('-') un var būt līdz 35 simboliem gara.

document.py 18KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437
  1. import json
  2. from flask import request
  3. from flask_restful import marshal, reqparse
  4. from sqlalchemy import desc, select
  5. from werkzeug.exceptions import NotFound
  6. import services
  7. from controllers.common.errors import FilenameNotExistsError
  8. from controllers.service_api import api
  9. from controllers.service_api.app.error import (
  10. FileTooLargeError,
  11. NoFileUploadedError,
  12. ProviderNotInitializeError,
  13. TooManyFilesError,
  14. UnsupportedFileTypeError,
  15. )
  16. from controllers.service_api.dataset.error import (
  17. ArchivedDocumentImmutableError,
  18. DocumentIndexingError,
  19. )
  20. from controllers.service_api.wraps import DatasetApiResource, cloud_edition_billing_resource_check
  21. from core.errors.error import ProviderTokenNotInitError
  22. from extensions.ext_database import db
  23. from fields.document_fields import document_fields, document_status_fields
  24. from libs.login import current_user
  25. from models.dataset import Dataset, Document, DocumentSegment
  26. from services.dataset_service import DocumentService
  27. from services.entities.knowledge_entities.knowledge_entities import KnowledgeConfig
  28. from services.file_service import FileService
  29. class DocumentAddByTextApi(DatasetApiResource):
  30. """Resource for documents."""
  31. @cloud_edition_billing_resource_check("vector_space", "dataset")
  32. @cloud_edition_billing_resource_check("documents", "dataset")
  33. def post(self, tenant_id, dataset_id):
  34. """Create document by text."""
  35. parser = reqparse.RequestParser()
  36. parser.add_argument("name", type=str, required=True, nullable=False, location="json")
  37. parser.add_argument("text", type=str, required=True, nullable=False, location="json")
  38. parser.add_argument("process_rule", type=dict, required=False, nullable=True, location="json")
  39. parser.add_argument("original_document_id", type=str, required=False, location="json")
  40. parser.add_argument("doc_form", type=str, default="text_model", required=False, nullable=False, location="json")
  41. parser.add_argument(
  42. "doc_language", type=str, default="English", required=False, nullable=False, location="json"
  43. )
  44. parser.add_argument(
  45. "indexing_technique", type=str, choices=Dataset.INDEXING_TECHNIQUE_LIST, nullable=False, location="json"
  46. )
  47. parser.add_argument("retrieval_model", type=dict, required=False, nullable=True, location="json")
  48. parser.add_argument("embedding_model", type=str, required=False, nullable=True, location="json")
  49. parser.add_argument("embedding_model_provider", type=str, required=False, nullable=True, location="json")
  50. args = parser.parse_args()
  51. dataset_id = str(dataset_id)
  52. tenant_id = str(tenant_id)
  53. dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
  54. if not dataset:
  55. raise ValueError("Dataset does not exist.")
  56. if not dataset.indexing_technique and not args["indexing_technique"]:
  57. raise ValueError("indexing_technique is required.")
  58. text = args.get("text")
  59. name = args.get("name")
  60. if text is None or name is None:
  61. raise ValueError("Both 'text' and 'name' must be non-null values.")
  62. upload_file = FileService.upload_text(text=str(text), text_name=str(name))
  63. data_source = {
  64. "type": "upload_file",
  65. "info_list": {"data_source_type": "upload_file", "file_info_list": {"file_ids": [upload_file.id]}},
  66. }
  67. args["data_source"] = data_source
  68. knowledge_config = KnowledgeConfig(**args)
  69. # validate args
  70. DocumentService.document_create_args_validate(knowledge_config)
  71. try:
  72. documents, batch = DocumentService.save_document_with_dataset_id(
  73. dataset=dataset,
  74. knowledge_config=knowledge_config,
  75. account=current_user,
  76. dataset_process_rule=dataset.latest_process_rule if "process_rule" not in args else None,
  77. created_from="api",
  78. )
  79. except ProviderTokenNotInitError as ex:
  80. raise ProviderNotInitializeError(ex.description)
  81. document = documents[0]
  82. documents_and_batch_fields = {"document": marshal(document, document_fields), "batch": batch}
  83. return documents_and_batch_fields, 200
  84. class DocumentUpdateByTextApi(DatasetApiResource):
  85. """Resource for update documents."""
  86. @cloud_edition_billing_resource_check("vector_space", "dataset")
  87. def post(self, tenant_id, dataset_id, document_id):
  88. """Update document by text."""
  89. parser = reqparse.RequestParser()
  90. parser.add_argument("name", type=str, required=False, nullable=True, location="json")
  91. parser.add_argument("text", type=str, required=False, nullable=True, location="json")
  92. parser.add_argument("process_rule", type=dict, required=False, nullable=True, location="json")
  93. parser.add_argument("doc_form", type=str, default="text_model", required=False, nullable=False, location="json")
  94. parser.add_argument(
  95. "doc_language", type=str, default="English", required=False, nullable=False, location="json"
  96. )
  97. parser.add_argument("retrieval_model", type=dict, required=False, nullable=False, location="json")
  98. args = parser.parse_args()
  99. dataset_id = str(dataset_id)
  100. tenant_id = str(tenant_id)
  101. dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
  102. if not dataset:
  103. raise ValueError("Dataset does not exist.")
  104. # indexing_technique is already set in dataset since this is an update
  105. args["indexing_technique"] = dataset.indexing_technique
  106. if args["text"]:
  107. text = args.get("text")
  108. name = args.get("name")
  109. if text is None or name is None:
  110. raise ValueError("Both text and name must be strings.")
  111. upload_file = FileService.upload_text(text=str(text), text_name=str(name))
  112. data_source = {
  113. "type": "upload_file",
  114. "info_list": {"data_source_type": "upload_file", "file_info_list": {"file_ids": [upload_file.id]}},
  115. }
  116. args["data_source"] = data_source
  117. # validate args
  118. args["original_document_id"] = str(document_id)
  119. knowledge_config = KnowledgeConfig(**args)
  120. DocumentService.document_create_args_validate(knowledge_config)
  121. try:
  122. documents, batch = DocumentService.save_document_with_dataset_id(
  123. dataset=dataset,
  124. knowledge_config=knowledge_config,
  125. account=current_user,
  126. dataset_process_rule=dataset.latest_process_rule if "process_rule" not in args else None,
  127. created_from="api",
  128. )
  129. except ProviderTokenNotInitError as ex:
  130. raise ProviderNotInitializeError(ex.description)
  131. document = documents[0]
  132. documents_and_batch_fields = {"document": marshal(document, document_fields), "batch": batch}
  133. return documents_and_batch_fields, 200
  134. class DocumentAddByFileApi(DatasetApiResource):
  135. """Resource for documents."""
  136. @cloud_edition_billing_resource_check("vector_space", "dataset")
  137. @cloud_edition_billing_resource_check("documents", "dataset")
  138. def post(self, tenant_id, dataset_id):
  139. """Create document by upload file."""
  140. args = {}
  141. if "data" in request.form:
  142. args = json.loads(request.form["data"])
  143. if "doc_form" not in args:
  144. args["doc_form"] = "text_model"
  145. if "doc_language" not in args:
  146. args["doc_language"] = "English"
  147. # get dataset info
  148. dataset_id = str(dataset_id)
  149. tenant_id = str(tenant_id)
  150. dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
  151. if not dataset:
  152. raise ValueError("Dataset does not exist.")
  153. if not dataset.indexing_technique and not args.get("indexing_technique"):
  154. raise ValueError("indexing_technique is required.")
  155. # save file info
  156. file = request.files["file"]
  157. # check file
  158. if "file" not in request.files:
  159. raise NoFileUploadedError()
  160. if len(request.files) > 1:
  161. raise TooManyFilesError()
  162. if not file.filename:
  163. raise FilenameNotExistsError
  164. upload_file = FileService.upload_file(
  165. filename=file.filename,
  166. content=file.read(),
  167. mimetype=file.mimetype,
  168. user=current_user,
  169. source="datasets",
  170. )
  171. data_source = {
  172. "type": "upload_file",
  173. "info_list": {"data_source_type": "upload_file", "file_info_list": {"file_ids": [upload_file.id]}},
  174. }
  175. args["data_source"] = data_source
  176. # validate args
  177. knowledge_config = KnowledgeConfig(**args)
  178. DocumentService.document_create_args_validate(knowledge_config)
  179. dataset_process_rule = dataset.latest_process_rule if "process_rule" not in args else None
  180. if not knowledge_config.original_document_id and not dataset_process_rule and not knowledge_config.process_rule:
  181. raise ValueError("process_rule is required.")
  182. try:
  183. documents, batch = DocumentService.save_document_with_dataset_id(
  184. dataset=dataset,
  185. knowledge_config=knowledge_config,
  186. account=dataset.created_by_account,
  187. dataset_process_rule=dataset_process_rule,
  188. created_from="api",
  189. )
  190. except ProviderTokenNotInitError as ex:
  191. raise ProviderNotInitializeError(ex.description)
  192. document = documents[0]
  193. documents_and_batch_fields = {"document": marshal(document, document_fields), "batch": batch}
  194. return documents_and_batch_fields, 200
  195. class DocumentUpdateByFileApi(DatasetApiResource):
  196. """Resource for update documents."""
  197. @cloud_edition_billing_resource_check("vector_space", "dataset")
  198. def post(self, tenant_id, dataset_id, document_id):
  199. """Update document by upload file."""
  200. args = {}
  201. if "data" in request.form:
  202. args = json.loads(request.form["data"])
  203. if "doc_form" not in args:
  204. args["doc_form"] = "text_model"
  205. if "doc_language" not in args:
  206. args["doc_language"] = "English"
  207. # get dataset info
  208. dataset_id = str(dataset_id)
  209. tenant_id = str(tenant_id)
  210. dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
  211. if not dataset:
  212. raise ValueError("Dataset does not exist.")
  213. # indexing_technique is already set in dataset since this is an update
  214. args["indexing_technique"] = dataset.indexing_technique
  215. if "file" in request.files:
  216. # save file info
  217. file = request.files["file"]
  218. if len(request.files) > 1:
  219. raise TooManyFilesError()
  220. if not file.filename:
  221. raise FilenameNotExistsError
  222. try:
  223. upload_file = FileService.upload_file(
  224. filename=file.filename,
  225. content=file.read(),
  226. mimetype=file.mimetype,
  227. user=current_user,
  228. source="datasets",
  229. )
  230. except services.errors.file.FileTooLargeError as file_too_large_error:
  231. raise FileTooLargeError(file_too_large_error.description)
  232. except services.errors.file.UnsupportedFileTypeError:
  233. raise UnsupportedFileTypeError()
  234. data_source = {
  235. "type": "upload_file",
  236. "info_list": {"data_source_type": "upload_file", "file_info_list": {"file_ids": [upload_file.id]}},
  237. }
  238. args["data_source"] = data_source
  239. # validate args
  240. args["original_document_id"] = str(document_id)
  241. knowledge_config = KnowledgeConfig(**args)
  242. DocumentService.document_create_args_validate(knowledge_config)
  243. try:
  244. documents, batch = DocumentService.save_document_with_dataset_id(
  245. dataset=dataset,
  246. knowledge_config=knowledge_config,
  247. account=dataset.created_by_account,
  248. dataset_process_rule=dataset.latest_process_rule if "process_rule" not in args else None,
  249. created_from="api",
  250. )
  251. except ProviderTokenNotInitError as ex:
  252. raise ProviderNotInitializeError(ex.description)
  253. document = documents[0]
  254. documents_and_batch_fields = {"document": marshal(document, document_fields), "batch": document.batch}
  255. return documents_and_batch_fields, 200
  256. class DocumentDeleteApi(DatasetApiResource):
  257. def delete(self, tenant_id, dataset_id, document_id):
  258. """Delete document."""
  259. document_id = str(document_id)
  260. dataset_id = str(dataset_id)
  261. tenant_id = str(tenant_id)
  262. # get dataset info
  263. dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
  264. if not dataset:
  265. raise ValueError("Dataset does not exist.")
  266. document = DocumentService.get_document(dataset.id, document_id)
  267. # 404 if document not found
  268. if document is None:
  269. raise NotFound("Document Not Exists.")
  270. # 403 if document is archived
  271. if DocumentService.check_archived(document):
  272. raise ArchivedDocumentImmutableError()
  273. try:
  274. # delete document
  275. DocumentService.delete_document(document)
  276. except services.errors.document.DocumentIndexingError:
  277. raise DocumentIndexingError("Cannot delete document during indexing.")
  278. return 204
  279. class DocumentListApi(DatasetApiResource):
  280. def get(self, tenant_id, dataset_id):
  281. dataset_id = str(dataset_id)
  282. tenant_id = str(tenant_id)
  283. page = request.args.get("page", default=1, type=int)
  284. limit = request.args.get("limit", default=20, type=int)
  285. search = request.args.get("keyword", default=None, type=str)
  286. dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
  287. if not dataset:
  288. raise NotFound("Dataset not found.")
  289. query = select(Document).filter_by(dataset_id=str(dataset_id), tenant_id=tenant_id)
  290. if search:
  291. search = f"%{search}%"
  292. query = query.filter(Document.name.like(search))
  293. query = query.order_by(desc(Document.created_at), desc(Document.position))
  294. paginated_documents = db.paginate(select=query, page=page, per_page=limit, max_per_page=100, error_out=False)
  295. documents = paginated_documents.items
  296. response = {
  297. "data": marshal(documents, document_fields),
  298. "has_more": len(documents) == limit,
  299. "limit": limit,
  300. "total": paginated_documents.total,
  301. "page": page,
  302. }
  303. return response
  304. class DocumentIndexingStatusApi(DatasetApiResource):
  305. def get(self, tenant_id, dataset_id, batch):
  306. dataset_id = str(dataset_id)
  307. batch = str(batch)
  308. tenant_id = str(tenant_id)
  309. # get dataset
  310. dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
  311. if not dataset:
  312. raise NotFound("Dataset not found.")
  313. # get documents
  314. documents = DocumentService.get_batch_documents(dataset_id, batch)
  315. if not documents:
  316. raise NotFound("Documents not found.")
  317. documents_status = []
  318. for document in documents:
  319. completed_segments = (
  320. db.session.query(DocumentSegment)
  321. .filter(
  322. DocumentSegment.completed_at.isnot(None),
  323. DocumentSegment.document_id == str(document.id),
  324. DocumentSegment.status != "re_segment",
  325. )
  326. .count()
  327. )
  328. total_segments = (
  329. db.session.query(DocumentSegment)
  330. .filter(DocumentSegment.document_id == str(document.id), DocumentSegment.status != "re_segment")
  331. .count()
  332. )
  333. # Create a dictionary with document attributes and additional fields
  334. document_dict = {
  335. "id": document.id,
  336. "indexing_status": "paused" if document.is_paused else document.indexing_status,
  337. "processing_started_at": document.processing_started_at,
  338. "parsing_completed_at": document.parsing_completed_at,
  339. "cleaning_completed_at": document.cleaning_completed_at,
  340. "splitting_completed_at": document.splitting_completed_at,
  341. "completed_at": document.completed_at,
  342. "paused_at": document.paused_at,
  343. "error": document.error,
  344. "stopped_at": document.stopped_at,
  345. "completed_segments": completed_segments,
  346. "total_segments": total_segments,
  347. }
  348. documents_status.append(marshal(document_dict, document_status_fields))
  349. data = {"data": documents_status}
  350. return data
  351. api.add_resource(
  352. DocumentAddByTextApi,
  353. "/datasets/<uuid:dataset_id>/document/create_by_text",
  354. "/datasets/<uuid:dataset_id>/document/create-by-text",
  355. )
  356. api.add_resource(
  357. DocumentAddByFileApi,
  358. "/datasets/<uuid:dataset_id>/document/create_by_file",
  359. "/datasets/<uuid:dataset_id>/document/create-by-file",
  360. )
  361. api.add_resource(
  362. DocumentUpdateByTextApi,
  363. "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/update_by_text",
  364. "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/update-by-text",
  365. )
  366. api.add_resource(
  367. DocumentUpdateByFileApi,
  368. "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/update_by_file",
  369. "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/update-by-file",
  370. )
  371. api.add_resource(DocumentDeleteApi, "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>")
  372. api.add_resource(DocumentListApi, "/datasets/<uuid:dataset_id>/documents")
  373. api.add_resource(DocumentIndexingStatusApi, "/datasets/<uuid:dataset_id>/documents/<string:batch>/indexing-status")